Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v81y2019icp355-379.html
   My bibliography  Save this article

Do all clean energy stocks respond homogeneously to oil price?

Author

Listed:
  • Pham, Linh
Abstract
This paper investigates whether the relationship between oil price and clean energy stock is homogeneous across sub-sectors of the clean energy stock market and its implications for portfolio diversification and clean energy finance policy. We contribute to the literature by being the first empirical paper to document the oil price-clean energy stock relationship at a disaggregate level, thereby providing a more detailed picture of the clean energy stock market. Our findings show that the relationship between oil price and clean energy stock varies largely across clean energy stock sub-sectors. Specifically, biofuel and energy management stocks are the most connected to oil price, while wind, geothermal, fuel cell stocks are among the least connected to oil price. This implies that the hedging cost and effectiveness of a clean energy investment portfolio is dependent on the type of clean energy stock included, therefore, active portfolio management at a disaggregate level is of particular importance. Additionally, policy should take into account the specific characteristics of individual clean energy sub-sectors in order to effectively promote clean energy investment.

Suggested Citation

  • Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
  • Handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:355-379
    DOI: 10.1016/j.eneco.2019.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319301240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    4. Gjika, Dritan & Horváth, Roman, 2013. "Stock market comovements in Central Europe: Evidence from the asymmetric DCC model," Economic Modelling, Elsevier, vol. 33(C), pages 55-64.
    5. Yuan-Hung Hsu Ku & Ho-Chyuan Chen & Kuang-Hua Chen, 2007. "On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 503-509.
    6. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    7. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    8. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    9. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    10. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    11. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    12. Lundgren, Amanda Ivarsson & Milicevic, Adriana & Uddin, Gazi Salah & Kang, Sang Hoon, 2018. "Connectedness network and dependence structure mechanism in green investments," Energy Economics, Elsevier, vol. 72(C), pages 145-153.
    13. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    16. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    17. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    18. Hwang, Eugene & Min, Hong-Ghi & Kim, Bong-Han & Kim, Hyeongwoo, 2013. "Determinants of stock market comovements among US and emerging economies during the US financial crisis," Economic Modelling, Elsevier, vol. 35(C), pages 338-348.
    19. Ahmad, Wasim, 2017. "On the dynamic dependence and investment performance of crude oil and clean energy stocks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 376-389.
    20. Simon A. Broda & Marc S. Paolella, 2009. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 412-436, Fall.
    21. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    22. Kun Zhang & Laiwan Chan, 2009. "Efficient factor GARCH models and factor-DCC models," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 71-91.
    23. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    24. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    25. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    26. Sadorsky, Perry, 2014. "Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat," Energy Economics, Elsevier, vol. 43(C), pages 72-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    2. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    3. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    4. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    5. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    6. Kocaarslan, Baris & Soytas, Ugur, 2019. "Dynamic correlations between oil prices and the stock prices of clean energy and technology firms: The role of reserve currency (US dollar)," Energy Economics, Elsevier, vol. 84(C).
    7. Karkowska, Renata & Urjasz, Szczepan, 2023. "How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    8. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    9. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    10. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    11. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    12. Elsayed, Ahmed H. & Nasreen, Samia & Tiwari, Aviral Kumar, 2020. "Time-varying co-movements between energy market and global financial markets: Implication for portfolio diversification and hedging strategies," Energy Economics, Elsevier, vol. 90(C).
    13. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    14. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    15. Shahbaz, Muhammad & Trabelsi, Nader & Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Jiao, Zhilun, 2021. "Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis," Energy Economics, Elsevier, vol. 104(C).
    16. Syed Kumail Abbas Rizvi & Bushra Naqvi & Nawazish Mirza, 2022. "Is green investment different from grey? Return and volatility spillovers between green and grey energy ETFs," Annals of Operations Research, Springer, vol. 313(1), pages 495-524, June.
    17. Yahya, Muhammad & Ghosh, Sajal & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah, 2020. "Evaluation of cross-quantile dependence and causality between non-ferrous metals and clean energy indexes," Energy, Elsevier, vol. 202(C).
    18. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    19. Mohamed Yousfi & Abderrazak Dhaoui & Houssam Bouzgarrou, 2021. "Risk Spillover during the COVID-19 Global Pandemic and Portfolio Management," JRFM, MDPI, vol. 14(5), pages 1-29, May.
    20. Tareq Saeed & Elie Bouri & Dang Khoa Tran, 2020. "Hedging Strategies of Green Assets against Dirty Energy Assets," Energies, MDPI, vol. 13(12), pages 1-17, June.

    More about this item

    Keywords

    Oil price; Clean energy stock; Heterogeneous relationship;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:355-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.