Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.08366.html
   My bibliography  Save this paper

Estimation of Conditional Random Coefficient Models using Machine Learning Techniques

Author

Listed:
  • Stephan Martin
Abstract
Nonparametric random coefficient (RC)-density estimation has mostly been considered in the marginal density case under strict independence of RCs and covariates. This paper deals with the estimation of RC-densities conditional on a (large-dimensional) set of control variables using machine learning techniques. The conditional RC-density allows to disentangle observable from unobservable heterogeneity in partial effects of continuous treatments adding to a growing literature on heterogeneous effect estimation using machine learning. %It is also informative of the conditional potential outcome distribution. This paper proposes a two-stage sieve estimation procedure. First a closed-form sieve approximation of the conditional RC density is derived where each sieve coefficient can be expressed as conditional expectation function varying with controls. Second, sieve coefficients are estimated with generic machine learning procedures and under appropriate sample splitting rules. The $L_2$-convergence rate of the conditional RC-density estimator is derived. The rate is slower by a factor then typical rates of mean regression machine learning estimators which is due to the ill-posedness of the RC density estimation problem. The performance and applicability of the estimator is illustrated using random forest algorithms over a range of Monte Carlo simulations and with real data from the SOEP-IS. Here behavioral heterogeneity in an economic experiment on portfolio choice is studied. The method reveals two types of behavior in the population, one type complying with economic theory and one not. The assignment to types appears largely based on unobservables not available in the data.

Suggested Citation

  • Stephan Martin, 2022. "Estimation of Conditional Random Coefficient Models using Machine Learning Techniques," Papers 2201.08366, arXiv.org.
  • Handle: RePEc:arx:papers:2201.08366
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.08366
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Breunig, Christoph & Huck, Steffen & Schmidt, Tobias & Weizsäcker, Georg, 2021. "The Standard Portfolio Choice Problem in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 131(638), pages 2413-2446.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Matthew A Masten, 2018. "Random Coefficients on Endogenous Variables in Simultaneous Equations Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 1193-1250.
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheqi Wang & Dehui Wang & Jianhua Cheng, 2023. "A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 619-658, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    5. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    6. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    7. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    8. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
    9. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    10. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    12. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    13. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    14. Haiqing Xu, 2010. "Social Interactions: A Game Theoretic Approach," Department of Economics Working Papers 130914, The University of Texas at Austin, Department of Economics.
    15. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    16. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    17. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    18. Joris Pinkse & Karl Schurter, 2019. "Estimation of Auction Models with Shape Restrictions," Papers 1912.07466, arXiv.org.
    19. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    20. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.08366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.