Double debiased machine learning nonparametric inference with continuous treatments
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hidehiko Ichimura & Whitney K. Newey, 2022.
"The influence function of semiparametric estimators,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers 44/15, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The Influence Function of Semiparametric Estimators," CIRJE F-Series CIRJE-F-985, CIRJE, Faculty of Economics, University of Tokyo.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers CWP06/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers CWP44/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers 06/17, Institute for Fiscal Studies.
- Keisuke Hirano & Jack R. Porter, 2009.
"Asymptotics for Statistical Treatment Rules,"
Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
- Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Guido W. Imbens & Whitney K. Newey, 2009.
"Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity,"
Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
- Guido W. Imbens & Whitney K. Newey, 2002. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," NBER Technical Working Papers 0285, National Bureau of Economic Research, Inc.
- Whitney Newey & Guido Imbens, 2004. "Identification and Estimation of Triangular Simultaneous Equations Models without Additivity," Econometric Society 2004 North American Summer Meetings 594, Econometric Society.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020.
"Direct and indirect effects of continuous treatments based on generalized propensity score weighting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
- Hsu, Yu-Chin & Huber, Martin & Lee, Ying-Ying & Pipoz, Layal, 2018. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," FSES Working Papers 495, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
- Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
- Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007.
"Evaluating Continuous Training Programs Using the Generalized Propensity Score,"
IZA Discussion Papers
3255, Institute of Labor Economics (IZA).
- Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," Ruhr Economic Papers 35, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," Discussion Papers of DIW Berlin 752, DIW Berlin, German Institute for Economic Research.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019.
"Two-Step Estimation and Inference with Possibly Many Included Covariates,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
- Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2018. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Papers 1807.10100, arXiv.org.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Department of Economics, Working Paper Series qt86c7x315, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," University of California at San Diego, Economics Working Paper Series qt86c7x315, Department of Economics, UC San Diego.
- Victor Chernozhukov & Jerry A. Hausman & Whitney K. Newey, 2019.
"Demand Analysis with Many Prices,"
NBER Working Papers
26424, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Jerry Hausman & Whitney K. Newey, 2019. "Demand analysis with many prices," CeMMAP working papers CWP59/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Carlos A. Flores, 2007. "Estimation of Dose-Response Functions and Optimal Doses with a Continuous Treatment," Working Papers 0707, University of Miami, Department of Economics.
- Newey, Whitney K., 1994.
"Kernel Estimation of Partial Means and a General Variance Estimator,"
Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
- Newey, W.K., 1992. "Kernel Estimation of Partial Means and a General Variance Estimator," Working papers 93-3, Massachusetts Institute of Technology (MIT), Department of Economics.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Carlos A. Flores & Alfonso Flores-Lagunes & Arturo Gonzalez & Todd C. Neumann, 2012. "Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 153-171, February.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019.
"Semi-Parametric Efficient Policy Learning with Continuous Actions,"
Papers
1905.10116, arXiv.org, revised Jul 2019.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," CeMMAP working papers CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Lee, Ying-Ying & Li, Hsueh-Hsiang, 2018. "Partial effects in binary response models using a special regressor," Economics Letters, Elsevier, vol. 169(C), pages 15-19.
- Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
- Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Antonio F. Galvao & Liang Wang, 2015. "Uniformly Semiparametric Efficient Estimation of Treatment Effects With a Continuous Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1528-1542, December.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012.
"Evaluating continuous training programmes by using the generalized propensity score,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
- Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," Discussion Papers of DIW Berlin 752, DIW Berlin, German Institute for Economic Research.
- Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating continuous training programs using the generalized propensity score1," Technical Reports 2007,39, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012.
"Evaluating continuous training programmes by using the generalized propensity score,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
- Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2012. "Evaluating continuous training programmes by using the generalized propensity score," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 175(2), pages 587-617.
- Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020.
"Direct and indirect effects of continuous treatments based on generalized propensity score weighting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
- Hsu, Yu-Chin & Huber, Martin & Lee, Ying-Ying & Pipoz, Layal, 2018. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," FSES Working Papers 495, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
- Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
- Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
- Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
- Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-07-26 (Big Data)
- NEP-CMP-2021-07-26 (Computational Economics)
- NEP-ORE-2021-07-26 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:72/19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.