Սկալյար արտադրյալ
Սկալյար արտադրյալ (երբեմն՝ ներքին արտադրյալ), գործողություն երկու վեկտորների միջև. արդյունքը թիվ է, (երբ դիտարկվում են վեկտորներ, թվերը հաճախ անվանվում են սկալյարներ) որը կախված չէ կոորդինատային համակարգից և բնութագրում է վեկտոր-արտադրիչների երկարություններն ու անկյունը դրանց միջև։ Տրված գործողությանը համապատասխանում է x վեկտորի երկարության բազմապատկումը x վեկտորի վրա y վեկտորի պրոյեկցիայով։ Այս գործողությունը սովորաբար դիտարկվում է որպես տեղափոխական և գծային ըստ յուրաքանչյուր արտադրիչի։
Սովորաբար օգտագործվում է հետևյալ նշանակումներից մեկը.
- ,
- ,
- ,
(կամ Դիրակի նշանակումը[1]), որը հաճախ օգտագործվում է քվանտային մեխանիկայում
- .
Սովորաբար ենթադրվում է, որ սկալյար արտադրյալը որոշված է դրականորեն, այսինքն՝
- բոլոր a-երի համար ().
Հակառակ դեպքում արտադրյալը կոչվում է ինդեֆինիտ կամ անորոշ։
Սահմանում
[խմբագրել | խմբագրել կոդը]վեկտորական տարածությունում կոմպլեքս թվերի (կամ իրական թվերի ) դաշտի նկատմամբ սկալյար արտադրյալ կոչվում է ֆունկցիան, որը որոշված է ցանկացած տարրերի համար և ընդունում է արժեքներ - ում (կամ -ում)։ Ֆունկցիան բավարարում է հետևյալ պայմաններին.
- տարածության ցանկացած երեք և տարրերի և -ի (կամ -ի) ցանկացած թվերի համար ճիշտ է հետևյալ հավասարությունը. ;
- ցանկացած և -ի համար ճիշտ է հավասարությունը;
- ցանկացած -ի համար ունենք , ընդ որում
միայն դեպքում։
Հանրահաշվական սահմանում
[խմբագրել | խմբագրել կոդը]n-աչափ իրական տարածությունում a = [a1, a2, ..., an] և b = [b1, b2, ..., bn] երկու վեկտորների սկալյար արտադրյալը սահմանվում է ինչպես.[2]
- :
Օրինակ, եռաչափ տարածությունում [1, 3, −5] և [4, −2, −1] վեկտորների արտադրյալը կհաշվարկվի այսպես.
a = [a1, a2, ..., an] և b = [b1, b2, ..., bn] կոմպլեքս վեկտորների համար սկալյար արտադրյալը կլինի.
- :
Օրինակ,
Երկրաչափական սահմանում
[խմբագրել | խմբագրել կոդը]== Օրինակներ ==AB վեկտորի և BC վեկտորի սկալյար արտադրյալ
Հատկություններ
[խմբագրել | խմբագրել կոդը]- Կոսինուսների թեորեմը հեշտությամբ արտածվում է սկալյար արտադրյալի կիրառմամբ.
- Անկյունը վեկտորների միջև.
- Վեկտորների կազմած անկյան գնահատումը.
- բանաձևում նշանը որոշվում է միայն անկյան կոսինուսով (նորմաները միշտ դրական են)։ Այդ պատճառով սկալյար արտադրյալը > 0, եթե վեկտորների կազմած անկյունը սուր է, և < 0, եթե վեկտորների կազմած անկյունը բութ է։
- վեկտորի պրոյեկցիան միավոր վեկտորով սահմանված ուղղության վրա.
- , քանի որ
- և վեկտորների օրթոգոնալության (ուղղահայացության) պայմանը.
- և երկու վեկտորներով կառուցված զուգահեռագծի մակերեսը հավասար է.
Գծային տարածության ցանկացած և էլեմենտների համար տեղի ունի հետևյալ անհավասարությունը [1] Արխիվացված 2009-02-27 Wayback Machine
:
Պատմություն
[խմբագրել | խմբագրել կոդը]Սկալյար արտադրյալը ներմուծվել է Ուիլյամ Համիլտոնի կողմից 1846 թվականին[3], վեկտորական արտադրյալի հետ միաժամանակ, կապված քվատերնիոնների հետ, համապատասխանաբար ինչպես երկու այնպիսի քվատերնիոնների արտադրյալի սկալյար և վեկտորական մասեր, որոնց սկալյար մասը հավասար է զրոյի[4]։
Տես նաև
[խմբագրել | խմբագրել կոդը]Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ Bra–ket notation
- ↑ S. Lipschutz, M. Lipson (2009). Linear Algebra (Schaum’s Outlines) (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.
- ↑ Crowe M. J. A History of Vector Analysis – The Evolution of the Idea of a Vectorial System. — Courier Dover Publications, 1994. — С. 32. — 270 с. — ISBN 0486679101
- ↑ Hamilton W. R. On Quaternions; or on a New System of Imaginaries in Algebra // Philosophical Magazine. 3rd Series. —London, 1846. — Т. 29. — С. 30.
Վիքիպահեստն ունի նյութեր, որոնք վերաբերում են «Սկալյար արտադրյալ» հոդվածին։ |
|