Numerikus sorok
Ha végtelen sok számot adunk össze, akkor végtelen sort kapunk. Néhány példa:
A végtelen sorok tanulmányozása már a 17. században elkezdődött. Bizonyos mennyiségek és függvények kiszámítása egyszerűbbé válik, ha végtelen soralakban írjuk fel őket.
Alapvető fogalmak
szerkesztésHa (xn) egy számsorozat, akkor numerikus soron (illetve az (xn) számsorozatból képezett soron) az
rendezett párt értjük, ahol
az (xn) sorozat részletösszegeinek sorozata. Az (xn)-ből képezett sor jelölésére a
jelölés használatos. Ebben a tekintetben egy n számot indexnek, az xn számot a sor n-edik tagjának nevezzük. xn az sn összeg utolsó tagja.
Gyakran van, hogy egy sor olyan (xn) sorozatból készül, mely nem a természetes számok N halmazán, hanem annak az m számnál nagyobb-egyenlő számokból álló részhalmazán értelmezett. Ezt a következőféleképpen jelöljük:
Megjegyzés. Sokszor magára a sorra csak mint az (sn) részletösszeg-sorozatra gondolnak, nem szükséges, hogy a numerikus sort rendezett párként definiálják, legfeljebb néha előnyös.
Azt mondjuk, hogy a ∑(xn) sor konvergens, ha a részletösszegeinek (sn) sorozata konvergens. Ha ∑(xn) konvergens, akkor az (sn) határértékét a ∑(xn) sor összegének nevezzük és a
szimbólummal jelöljük.
Megjegyezzük, hogy a ∑(xn) pontosan akkor konvergens, ha az első m-1 tagjának elhagyásával kapott sor is az. De a két sor összege már nem feltétlenül azonos. A sor összegezhetősége szempontjából ugyan nem, de a sor összege meghatározásánál lényeges az, hogy az összegzést melyik indextől kezdjük. Például tetszőleges q valós számra
- és
egyszerre konvergensek vagy nem, de az |q| < 1 összegezhetőségi feltétel fennállása esetén
- és
Konvergenciakritériumok
szerkesztésCauchy-konvergenciakritérium
szerkesztésSorok összegezhetőségének megállapításánál ugyanaz a nehézség áll elő, mint a sorozatok konvergenciájának megállapításánál. Ha definíció szerint szeretnénk belátni a konvergenciát, akkor előre tudnunk kellene a sor összegét. Ezt a nehézséget először Cauchy hidalta át, aki a konvergenciára egy olyan kritériumot vezetett be, mely nem feltételezi a sorösszeg ismeretét.
Cauchy-kritérium. Az alábbi kijelentések ekvivalensek egymással:
- ∑(an) végtelen sor konvergens
Ezt azt jelenti, hogy egy sor pontosan akkor konvergens, ha a részletösszegek sorozata a Cauchy-sorozat. Ugyanis
- .
Szükséges kritérium
szerkesztésKonvergens numerikus sorok esetén lehetetlen, hogy az a sorozat, amiből a sort képeztük ne legyen nullsorozat.
Sorok összegezhetőségének szükséges feltétele
Ha a ∑(an) sor konvergens, akkor an 0.
Ugyanis, legyen a sor összege A ∈ R és a ∑(an) részletösszegeinek sorozata (sn). Mivel (sn-1) részsorozata a konvergens (sn)-nek ezért:
szintén konvergens és a konvergens sorozatok különbségének határértékére vonatkozó tulajdonság miatt:
- .
Ez a feltétel nem elégséges. Nevezetes ellenpélda ugyanis a
harmonikus sor, mely divergens, bár a tagjai a nullához tartanak. Ezt már a Cauchy-kritériummal is igazolni tudjuk. Legyen ugyanis ε = 1/2 és N tetszőleges természetes szám. Ekkor az n = N + 1 és m = 2N számok olyanok, hogy
Egy másik jellegzetes példa. A
sor tagjai a nullához tartanak, ugyanakkor a sor n-edik részletösszege teleszkopikus összeg és
Megjegyzés: egy nem negatív tagú sor akkor és csak akkor konvergens, ha a részletösszegeinek sorozata korlátos, illetve ha egy nemnegatív tagú sor divergens, akkor az összege végtelen.
Végtelen sorok és műveletek
szerkesztésÁllítás: Ha a végtelen sor konvergens és az összege A, akkor minden -re a sor is konvergens, és az összege .
Bizonyítás:Ha a sor n-edik részletösszege , akkor a sor n-edik részletösszege . Így az állítás abból következik, hogy
Állítás: Ha a és sorok konvergensek, és összegük A illetve B, akkor a sor is konvergens, és az összege A+B.
Bizonyítás: Ha a megfelelő sorok n-edik részletösszegei illetve , akkor a sor n-edik részletösszegei . Így az állítás következik abból, hogy .
Megjegyzés: Egy konvergens sor tagjai közül akárhány 0-val egyenlő tagot elhagyva, illetve akárhány 0-t beszúrva a sor konvergens marad és az összege nem változik.
Állítás: Egy konvergens sor tagjai közül véges sokat elhagyva, véges sok új tagot beszúrva, illetve véges sok tagot megváltoztatva a sor konvergens marad.
Bizonyítás: Tegyük fel, hogy a sor tagjai közül az tagot elhagyjuk. Ekkor esetén az új sor n-edik részletösszege lesz, tehát az új sor részletösszegeinek sorozata -hoz tart. Ha viszont a sor k-adik és k+1-edik tagja közé beszúrunk egy új c tagot, akkor n>k esetén az új sor n-edik részletösszege lesz, tehát az új sor részletösszegeinek sorozata A+c-hez tart. Mindkét esetben konvergens sort kapunk. Ebből következik, hogy e két operációt véges sokszor elvégezve az eredményül kapott sor konvergens marad. Véges sok tag megváltoztatása elérhető úgy, hogy az illető tagokat elhagyjuk, majd a helyükre újakat szúrunk be, tehát a konvergenciát ez sem változtatja meg.
Azt mondjuk, hogy a végtelen sor a és sorok összefésülése, ha a sorozat az és tagokat és csak azokat sorolja fel, mindegyiket pontosan egyszer, és az , illetve tagok sorrendje a sorozatban ugyanaz, mint az illetve sorozatban.
Állítás: Ha a és sorok konvergensek és az összegük A, illetve B, akkor a sorok minden összefésülése is konvergens, és az összege A+B.
Bizonyítás: A két sor minden összefésülése megkapható oly módon, hogy mindkét sorba alkalmas helyekre 0 tagokat szúrunk be, majd az így kapott két sort tagonként összeadjuk. Így az állítás a fentiekből következik.
Abszolút és feltételes konvergencia
szerkesztésA végtelen sort abszolút konvergensnek nevezzük, ha a sor konvergens.
Állítás: Minden abszolút konvergens sor konvergens.
Bizonyítás: Ha abszolút konvergens, akkor a Cauchy-kritérium szerint minden >0-hoz van olyan N, hogy teljesül minden -re. De ekkor a háromszög-egyenlőtlenség szerint is teljesül, tehát a sor is kielégíti a Cauchy-kritériumot.Tehát az állítást beláttuk.
Tétel: Egy abszolút konvergens sor bármely átrendezettje is abszolút konvergens, és az összege ugyanaz mint az eredeti soré.
Bizonyítás: Legyen a a sor egy átrendezettje. Adott >0-hoz válasszunk egy olyan N-et, hogy teljesüljön minden m>N-re. Az tagok mind szerepelnek a sorban. Ha itt az indexeik maximuma M, akkor k>M esetén a tagoknak az sorbeli indexei nem kisebbek N-nél, tehát elég nagy m-re szerepelnek az tagok között. Így . Ebből következik, hogy a sor is kielégíti a Cauchy-kritériumot, tehát konvergens. Ezzel beláttuk, hogy a sor is abszolút konvergens, tehát a fenti állítás miatt konvergens is. Legyen és . Adott >0-ra legyen N és M mint fent. Ekkor k>max(N,M) esetén a különbségében minden tag kiesik, tehát olyan alakú tagok összege, amelyek indexei különbözőek és N-nél nagyobbak. Így alkalmas m>N-re Ezzel beláttuk, hogy . Azonban , tehát A=B.
A végtelen sort feltételesen konvergesnek nevezzük, ha konvergens, de nem abszolút konvergens.
Lásd még
szerkesztésIrodalom
szerkesztés- Laczkovich Miklós - T. Sós Vera, Analízis II., Nemzeti Tankönyvkiadó, 2007 ISBN 978-963-19-6084-6
- Császár Ákos, Valós analízis II., Nemzeti Tankönyvkiadó, 1999. ISBN 963-190-114-9