Physics">
Planche Méca Flu
Planche Méca Flu
Planche Méca Flu
!
Anne Petrenko Année 2015/2016!
Mickaël Bosco!
!
Exercice 1: Réservoir sans surface libre!
!
Soit le réservoir ci-dessous.!
!
1) Déterminer la pression au point M en fonction de HM et de HA.!
2) Si A est remplacé par A’, déterminer al nouvelle pression au point M!
!
Exercice 2: Pression dans la conduite!
!
Le but est de calculer la pression absolue à l’intérieur d’un conduite. Dans cette conduite
circule un fluide de poids volumique θ1 = 104 N.m-3. Pour cela, on utilise un baromètre et
un manomètre, tous deux remplis de mercure de poids volumique θHg = 13,3.104 N.m-3.!
!
Calculer la pression atmosphérique et la pression dans la conduite en Pascals avec H0 =
0.5 m, H1 = 0.3 m et H2 = 0.2 m.!
!
!
!
!
!
!
!
!
!
!
!
!
!
Exercice 3: Manomètre incliné !
!
!
Pour mesurer une faible surpression entre deux réservoirs, on utilise un manomètre en U,
incliné d'un angle α (α = arcsin(1/20)) par rapport à l'horizontale, contenant de l’alcool.!
!
!
!
1) On lit sur la graduation h = 45 cm. Calculer cette
surpression.!
2) Comparer h avec la hauteur que l'on aurait eue
en utilisant un manomètre à eau vertical.!
! 3
Donnée:! ⇢alcool = 780kg.m
!
!
!
!
!
Exercice 4: Mesure de la pression dans l’eau!
!
!
Exercice 5: Mesure de la pression dans l’air!
!
Supplément TD 1
!
TD n°2: Hydrostatique & Forces
!
A. Petrenko Année 2015-2016
M. Bosco
!
!
Exercie 1 : Action de l’eau sur un barrage
La figure ci-dessous représente une section de l’ensemble sol-barrage, eau et atmosphère dans le
plan de symétrie de l’unité de largeur du barrage. On note P le centre de poussée, h la hauteur totale
(h=30m) et pa, la pression atmosphérique (pa=105Pa)
1. Exprimer la résultante F des forces de pression exercée par l’eau sur le barrage par unité de
largeur
2. Déterminer la position du centre de poussée P après en avoir donné la définition
3. Calculer le module de F et la position de P
! z
! atmosphère
!
! barrage
! h eau
! P
! x
!
! O sol
!
!
Exercice 2 : Paroi cylindrique (facultatif - cours)
Déterminer la force sur la paroi gauche x
avec H1=1m, r=3m et de largeur b=1m.
! eau H1
!
! r
!
!
!
z
!
Exercice 3 : Paroi de réservoir x
O
Soit la paroi suivante de largeur b=2m
et de rayon =0.2m.
1) Préciser les trois forces dues à la pression F2 H=1.2m
de l’eau sur la paroi dont on néglige le poids r=0.2m F1
2) Déterminer les composantes verticale et
horizontale de la résultante ainsi que
eau
son intensité et inclinaison.
3) Faire l’AN
F3 γ=9.81kN/m3
z
!
!
Exercice 4 : Cloche hémisphérique
!
Une cloche hémisphèrique (rayon R, épaisseur e<< R, masse m) repose sur un plan
horizontal.!
!
!
Elle contient de l’eau jusqu’à une hauteur h. Un orifice pratiqué au sommet permet de
maintenir la pression atmosphèrique à l’interface eau/air.
L’épaisseur de paroi e est suffisamment faible pour considérer comme identiques les
surfaces intérieure et extérieure de la cloche.
Montrer qu’il existe une hauteur critique he au delà de laquelle l’équilibre est rompu (la
cloche se soulève)!
Application numérique : cloche en verre de densité d = 2,5 telle que e/R = 0,02!
Une bouteille de rayon R contient une hauteur H de liquide. Le fond est une ½
sphère.
1) Déterminer la direction et l’intensité de la résultante des forces de pression
qu’exerce le fluide sur les parois de cette bouteille.
2) Comparer ce résultat avec celui qui aurait été obtenu avec une bouteille à
fond plat. Conclure.
3) AN Bouteille remplie d’eau avec H = 25 cm, R = 3,5 cm
Exercice 5 : Sphères :
Exercice 6 : Corps Immergés :
1) Glace :
2) Cube en acier :
TD n˚4 Mécanique des Fluides
1. La pression en B et C
2. l’accélération ax nécessaire afin que la pression en B devienne nulle.
3 Exercice 3 : Bassine d’eau tournante
D = 40 cm et h = 1 m
1. Etablir le champ de pression p(r, z) de l’air du récipient en tout point de cote z et à la distance
r de l’axe de rotation ; on désignera PO la pression en O.
1
2. Déterminer la forme de l’isobare P = PO . Quelle doit être la vitesse de rotation !O (en rad.s
et en trs.min 1) pour que la pression sur le bord supérieur du vase soit la même qu’en O.
A. Petrenko Année 2013-2014
TD 5: Notion de fonction de courant & Potentiel de vitesse
M. Fraysse
TD n°5
M. Bosco! Mécanique des fluides Année 2015/ 2016
A. Petrenko
Si oui, déterminer :
a) les composantes de la vitesse
b) les lignes de courant
c) les lignes équipotentielles
d) faire un dessin du champ des vitesses
Exercice 3 : Circulation dans un coin
Soit un écoulement permanent plan (x,y) d'un fluide incompressible avec un champ
de vitesse tel que u=2Ax et v =−2Ay .
a) Vérifier que l 'écoulement existe et qu'il existe un potentiel de vitesse et le calculer.
b) Trouver la fonction de courant et dessiner le réseau des lignes et .
c) On remplace les lignes de courant x=0 et y0 et y=0 et x0 par une
frontière fermée. Décrire où à lieu l'écoulement.
d) On remplace une autre ligne de courant par une deuxième frontière. Cette ligne
passe par le point P x p , y p . Entre ces deux lignes, le débit par mètre de profondeur
est q en m3 . s−1 . Pour A positif, trouver les composantes de la vitesse en P et
calculer A (grandeur et unité).
3 −1 5
A.N. : q=10 m . s , x p =2 et y p= 2
Exercice 4 :
Dans un repère cartésien plan (Oxy), un écoulement a pour vitesse :
q x
u=
2 π x + y2
2
q y
v=
2 π x + y2
2
Chaque question est indépendante et peut être faite sans que la précédente ait été
résolue.
x x a
note : La dérivée de Arc tg a est égale à Arc tg ' a = 2 2 .
x+a
Exercice 2:!
Exercice 3:!
Exercice 4:!
!
!
Exercice 5:! !
Exercice 6:!
! Section 3= D
! 3
! turbine
!
!
!
On ne tient pas compte des pertes de charge ni dans la conduite, ni dans la turbine. L’écoulement est
turbulent. H= 100m, D2=1m, D3=2m
!
!
Exercice 2 :
!
Le jet d’eau de l’installation ci-après a une hauteur de 30m et un débit Q=0.5m3/s. La pompe
permettant le refoulement de l’eau a une puissance mécanique de PT=400kW et un rendement de
η=80%. La perte de charge est de 5cm par mètre courant de la conduite de refoulement et de 1m de
colonne d’eau à la buse du jet (on néglige les frottements dans l’air).
!
!
Déterminer :
1) la longueur de la conduite de !
refoulement L, ! H=30m
2) la pression juste avant la buse, ! θ=30°
3) dessiner la ligne de charge et la ligne !
piézométrique pour l’installation. L
!
! 2
g=9.81m/s , D conduite= 18.3cm, γeau=9.81kN/m3, α1=α2=1.
!
!
!
!
!
!
!
!
!
!
!
Exercice 3 :
!
Un jet de liquide parfait incompressible de masse volumique ρ heurte, avec une vitesse v et sous
une incidence normale, une paroi plane : il se divise en deux parties (1) et (2) comme l’indique la
figure sur la page suivante. On appelle S0 la section du jet incident, S1 la section de la partie (1) du
jet et S2 la section de la partie (2). On suppose que l’écoulement est stationnaire et que les forces
volumiques telles que la pesanteur sont négligeables. Les vitesses et les pressions sont supposées
uniformes dans toute section du jet éloignée du point O. Enfin, le jet est infini dans une direction
perpendiculaire au plan de la figure et on raisonnera par unité de largeur du jet.
!
1) Déterminer la relation entre les sections S0, S1 et S2 en utilisant l’équation de continuité puis
la résultante des forces subies par la paroi.
2) Comment les résultats précédents doivent-ils être modifiés si l’on suppose maintenant que le
jet heurte la plaque sous une incidence α par rapport à la plaque ?
!
! S0 air
!
! V
!
! SL
! V 1
S1 S2
V2
! O
S
! air
! paroi
x
!
!
!
Exercice 4 :
!
On considère l’écoulement stationnaire dans une conduite d’un fluide newtonien incompressible
non pesant. On mesure la différence de pression (ΔP) en deux points espacés d’une longueur L.
!
! P +ΔP P
!
!
! L
!
!
!
!
!
!
!
1) Déterminer les champs de vitesse et de pression dans la conduite dans le cas où l’écoulement
est unidirectionnel
2) En déduire le débit, la vitesse moyenne de l’écoulement Vm ainsi que la vitesse maximale
Vmax
3) On définit un coefficient de pertes de charge (*) linéaire représentant la chute de pression par
unité de longueur :
" ΔP #
% 1 2 ρV 2 &
Λ=' m (
"L#
%D&
! ' (
Etablir la loi de Poiseuille donnant Λ en fonction du nombre de Reynolds pour les écoulements
laminaires dans les conduites.
!
P V2
H= +z+
(*) « charge »= énergie volumique exprimée en métre : ! ρg 2g
!
!
Exercice 5 : Pression sur le nez d’un sous-marin
!
!
!
!
Exercice 6 : Relation de Bernoulli
!
!
Exercice 7 : Réservoir
!
!
!
Exercice 8 : Vidange d’une cuve
!
Exercice 9: Tube de Venturi
!
Exercice 10: Tube de Pitot
Exercice 11: Jet d’eau sur une plaque inclinée
!
!
Exercice 14 : Pompe
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Exercice 15 : Phénomène de cavitation
!
!
!
!
!
!
!
!
!
!
!
!
Supplément TD 7: Entonnoir conique!
!
!
!
Exercice 16:!
!
On considère l’entonnoir conique ci-dessous.!
!
1) On cherche à déterminer le temps de vidange du bassin conique. Pour cela, on
justifiera le fait de se placer dans el cas d’un problème non permanent.!
!
2) Retrouver la formule de Torricelli reliant la vitesse v d’écoulement d’un fluide à son
altitude z.!
!
3) A l’aide de considérations géométriques, déterminer le temps de vidange du bassin ci-
dessous.
Supplément TD 8: Equation de Navier Stokes!
!
Exercice 1:!
!
Un fluide incompressible s’écoule dans un conduit contenu entre les plans z=0 et z=a. La
paroi supérieure est en translation à la vitesse v0 selon l’axe (Ox), alors que celle du bas
est immobile. On considère un écoulement stationnaire de la forme:!
!
! ~v = v(z)u~x p = p(x, z)
!
!
1) Ecrire l’équation fondamentale de la dynamique pour une particule de fluide. On
expliquera la provenance du terme de viscosité.!
2) Montrer que la pression dépend linéairement de x à z fixé. Déterminer complètement
le champ de pression p(x,z). Qualifier la répartition de pression dans les plans
d’abscisse x.On note:!
!
! p1 = p(0, 0) p2 = p(L, 0) 4p = p2 p1
!
!
3) Etablir l’expression de la vitesse v(z). Commenter le résultat concernant son sens.!
!
4) Que se passerait-il pour un écoulement parfait? Montrer notamment que v est
uniforme.!
!
!
UNIVERSITÉ DE CAEN Examen Partiel :
UFR des SciencesTD 8: Mécanique des Fluides! Date : 18/11/2009
!
Master Mathématiques et Applications,
Ingénierie Mathématiques
Hydrodynamique/ et Mécanique
Equation (M1)
de Navier-Stokes
Dynamique des Fluides Réels
Examen partiel- Durée : 3 heurs
Documents et calculatrices non autorisés. Éteindre tout appareil de phone mobile.
M.Bosco! Année
Chaque candidat doit, en début d’épreuve, porter son nom dans le coin 2015/2016
de la copie qu’il
A.Petrenko
cachera par collage après avoir été pointé. Il devra en outre, porter son numéro de
place sur chacune de ses copies, intercalaires ou pièces annexées.
Exercice 1
On considère un chariot sur lequel est monté un réservoir d’eau (de diamètre D) munie d’une
tuyère d’éjection à travers duquel un jet de section constante est éjecté au milieu ambiant et dévié
par un déflecteur comme illustré ci-dessous. Le chariot est maintenu en place par un câble comme
schématisé sur la figure.
−
→
y
D
−
→
g
h Vj −
→
x
d α
Câble
Déflecteur
Exercice 2
Un système de tapis roulants est conçu pour transférer un produit chimique liquide d’un
réservoir vers un autre destiné à une application industrielle. Le mouvement de tapis entraı̂ne alors
un écoulement unidirectionnel, laminaire et permanent sous la forme d’un film liquide d’épaisseur
h comme illustré dans la figure.
1
2
−
→
g
L’air ambiant, au repos
U
Tapis patm = constante
roulant y
α
Réservoir
de produit chimique
(1) Quel est le système d’équations et conditions aux limites qui représente l’écoulement du
film ? Justifiez votre réponse.
(2) Déterminer la distribution de vitesse.
(3) Déterminer la répartition de contrainte de cisaillement, τyx , dans la direction x.
(4) Calculer le décharge ainsi obtenu par unité de largeur de tapis, Q, en fonction de U , h,
g, ρ et µ.
!
Exercice 3
Écoulement stratifié de deux liquides visqueux
volumiques et les viscosité de chacun des liquides sont dénotées respectivement ρ1 , µ1 pour liquide
1 et ρ2 , µ2 pour liquide 2. Le liquide 1 , plus dense (ρ1 > ρ2 ) est placé au-dessous du liquide 2, et
chacun occupe la moitié de l’espace entre les deux plaques. L’écoulement est stationnaire et est
produit uniquement par le mouvement de la plaque supérieure à la vitesse U , la plaque inférieure
reste immobile.
On se place suffisamment loin des bords latéraux des plaques pour que l’écoulement puisse
être considéré comme établi et unidirectionnel : −
→
v = u−
→
x.
3
Exercice 4
Dans plusieurs processus industriels un courant de liquide est passé sur un film des sphères
solides au fond d’un tube comme illustré à la figure. On peut observer lors de l’écoulement d’un
fluide incompressible le long d’un tube qu’à une certaine vitesse critique les particules se mettent
en mouvement le long du tube. On désire d’étudier la valeur de cette vitesse critique Vc . On admet
que Vc est une fonction du diamètre du tube D, du diamètre du particule Dp , la masse volumique
du liquide ρ, la viscosité dynamique du liquide µ, la densité de particules ρp et l’accélération de
la pesanteur g.
Exercice 5
Question du cours
On considère l’écoulement visqueux laminaire et incompressible sur une plaque plane semi-infinie.
On dénote dans ce qui suit par L une longueur caractéristique le long de la plaque, δ l’épaisseur
de la couche limite, Ue la vitesse du courant libre suffisamment loin de la plaque, ρ la masse
volumique du fluide et µ la viscosité dynamique.
y
Ue
Ue
δ
−
→
V = u−
→
x + v−
→
y x
estimer les ordrer de grandeurs de chaque terme et les utiliser pour simplifier ce système
d’équations afin de déterminer les équations de la couche limite de Prandtl.
!
Interro n˚1 (15 min)
Statique des fluides
1) Rappeler l’expression du PFSF et le projeter sur l’axe z dans le cas ascendant puis descendant. Etablir dans chaque
cas l’expression reliant la pression P à la masse volumique ⇢ pour un fluide supposé incompressible. Les schémas sont
les bienvenus !
a) Quelle principale différence existe entre un fluide compressible et un fluide incompressible ? Citez des exemples de
fluides dans chaque cas.
b) En utilisant la loi des gaz parfait, établir la relation reliant la masse volumique ⇢(z) à la pression P (z)
c) En utilisant le PFSF intégré entre 2 positions bien choisies, établir la nouvelle expression de P (z) en supposant
que le fluide est isotherme.
Un système de trois liquides non miscibles (eau, mercure, alcool) est en équilibre dans un tube en U overt à l’air
libre. Les hauteurs respectives d’eau et d’alcool ainsi que la distance entre les niveaux de mercure sont indiquées sur la
figure ci-dessous. On note respectivement ⇢1 , ⇢2 et ⇢3 les masses volumiques de l’eau, du mercure et de l’alcool.
Exprimer ⇢3 en fonction de ⇢1 , ⇢2 , h1 , h2 et h3 .
BONUS : Reprendre la question 2)c) de l’exercice 1 dans le cas où cette fois-ci T (z) = T0 + az et établir la nouvelle
expression de P (z)
Good luck !
1
Interro n˚2 (20 min)
Statique des fluides & Forces de Pression
1) Toujours la même question à savoir faire en quelques secondes ! : Rappeler l’expression du PFSF et le projeter
sur l’axe z dans le cas ascendant puis descendant. Etablir dans chaque cas l’expression reliant la pression P à la masse
volumique ⇢ pour un fluide supposé incompressible. Les schémas sont les bienvenus !
2) Rappeler les 4 principaux instruments permettant de mesurer la pression et détailler le principe du baromètre à
mercure.
3) Donner une méthode permettant de déterminer les coordonnées du centre de Poussée. A quoi correspond ce point
physiquement ? Où se situe le centre de pression par rapport au centre de gravité ?
Un nettoyeur vapeur est constitué d ?une cuve, contenant de l ?eau que l ?on chauffe pour la transformer en vapeur.
Pendant l ?utilisation, la pression à l ?intérieur de la cuve est P = 4 bars.
Déterminer la valeur de la force de pression Fp s’appliquant sur le bouchon cylindrique de la cuve qui une surface S
= 3, 14 cm2 et ne pas oublier d’utiliser les bonnes unités.
Good luck !
1
!!
Interro 7: Bernoulli et ses applications!
! !
Question de cours: Préciser les hypothèses du théorème de Bernoulli et l’énoncer. Une
démonstration pourra être appréciée pour les plus courageux.
!
Exercice 1:
!
La conduite forcée ci-contre est alimentée par un réservoir à un niveau d’eau constant.
!
Déterminer : !
1) la vitesse de sortie U
3 !
2) la vitesse dans la conduite U2 !
! ! Section 1
! !
!
!
! Section 2= D2
! Section 3= D3
!
! turbine
!
!
!
On ne tient pas compte des pertes de charge ni dans la conduite, ni dans la turbine. L’écoulement est
turbulent. H= 100m, D2=1m, D3=2m
!
!
!
Exercice 2:
Interro 8: Petit partiel Mécanique des Fluides (45 min)!
!
!
!
Question de cours: (5pts)!
!
Définir les notions de ligne de courant et ligne équipotentielle et les relier à leurs fonctions
associés. On pourra prendre un exemple d’application en considérant un écoulement plan
unidirectionnel et tracer ces lignes.!
!
Problème: Ecoulement dans une rivière (15 pts)!
!
L’eau est considérée comme un fluide parfait incompressible et l’écoulement est
permanent.!
!
Soit un canal horizontal à section rectangulaire de côté L = 4 m, parcouru par de l’eau de
masse volumique eeau avec une vitesse v uniforme et constante sur une section droite du
canal. La hauteur de l’eau est notée h, supposée constante.!
!
1) Définir les mots en gras dans l’énoncé ci-dessus.!
2) a) Rappeler sans démonstration l’équation locale de la conservation de la masse pour
un fluide quelconque.!
b) Que peut-on en déduire pour le champ des vitesses de l’eau? Que dire du débit
volumique Q et rappeler l’expression
intégrale puis simplifiée pour ce
problème.!
!
3) On place un tube de verre coudé dans
l’eau comme sur la figure suivante. On
appelle z la hauteur de la colonne d’eau
dans le tube par rapport à la surface
libre du canal.!
!
a) Rappeler l’énoncé du théorème de Bernoulli avec les hypothèses nécessaires.!
b) Exprimer alors la vitesse v du courant en fonction de z et g.!
c) On mesure une hauteur z = 10 cm. La hauteur d’eau vaut 3 m, calculer
numériquement le débit de ce canal. On prendra g = 9.81 SI.!
!
4) La hauteur h de l’eau circulant dans le canal n’est plus constante désormais. !
a) Que dire de la quantité K = gh +v2/2 sur tout le long du canal?!
b) Quelle est la signification physique de K? La calculer avec les valeurs précédentes.!
c) Exprimer le débit Q(h) en fonction de la profondeur h et des paramètres suivants: la
largeur du canal L, K et g. !
d) Représenter l’allure de la courbe du débit Q(h) en fonction de h et montrer que pour
un débit donné, il y a 2 profondeurs h1 et h2 possibles sauf pour une valeur critique hc
correspondant au débit maximal que l’on déterminera à la question suivante.!
e) Calculer la hauteur critique hc du canal correspondant à un débit maximal. Pou cela
on pourra notamment s’intéresser à la quantité dQ/dh. On exprimera cette hauteur critique
en fonction de K et g. Faire l’application numérique et déterminer ainsi la vitesse critique
vc.
Interro 9: The Last but not Least!
!
!
!
Exercice 1: Question de cours!
!
Rappeler l’équation d’Euler dans un premier temps. !
!
Par la suite, donner l’équation de Navier-Stokes et notamment sa forme « utile ». Identifier
l’origine de chaque terme.!
!
Enfin à l’aide d’hypothèses simplificatrices, démontrer que l’on peut arriver à obtenir
l’équation de Bernoulli.!
!
Exercice 2: Vidange d’une cuve!
!
On considère une cuve parallélépipédique de 10 m de longueur, 5 m de largeur et 2 m de
profondeur représentée ci-dessous. Cette cuve est représentée d’un liquide qui se vide
par un orifice percé au fond, débouchant à l’air libre dont la section vaut s = 0.5 dm2.!
!
On supposera que l’écoulement du liquide est incompressible et stationnaire et q’uil s’agit
d’un fluide parfait.!
!
1) On cherche à déterminer le temps de vidange du bassin conique. Pour cela, on
justifiera le fait de se placer dans le cas d’un problème non permanent.!
!
2) Retrouver la formule de Torricelli reliant la vitesse v d’écoulement d’un fluide à son
altitude z.!
!
3) A l’aide de considérations géométriques, déterminer le temps de vidange du bassin ci-
dessous.