Science">
Nothing Special   »   [go: up one dir, main page]

04 Tema 2-Riesgo y Rendimiento

Descargar como pdf o txt
Descargar como pdf o txt
Está en la página 1de 37

TEMA 2.

RIESGO Y RENDIMIENTO
La palabra riesgo proviene del latín
“Riscare” que significa “atreverse”.
En finanzas, el concepto de riesgo
está relacionado con la posibilidad de
RIESGO que ocurra un evento que se traduzca
en pérdidas para los participantes en
los mercados financieros, como
pueden ser inversionistas, deudores o
entidades financieras.
RIESGO

El rendimiento esperado de una inversión está positivamente


relacionado con el riesgo de la misma, es decir, un
rendimiento esperado más alto representa la compensación
que recibe un inversionista por el hecho de asumir un mayor
riesgo.
RIESGO

• Sin embargo, esta relación no es tan


clara como lo parece, puesto que
generalmente se define y se evalúa el
riesgo sobre dos bases distintas:

• El riesgo individual: está asociado


con una inversión cuando esta se
mantiene por sí misma, no en forma
combinada con otros activos.

• El riesgo de cartera: está asociado


con una inversión cuando ésta se
mantiene en forma combinada con
otros activos, no por sí misma.
RIESGO E INCERTIDUMBRE

• Cuando podemos estimar el valor de una variable en el


futuro y le asignamos una probabilidad o definimos un
posible escenario, entonces estamos considerando un
riesgo; a diferencia de cuando tenemos variables que no
podemos estimar y mucho menos asignarles una
probabilidad de ocurrencia, en este caso tenemos
incertidumbre.
RIESGO

En cuanto al riesgo se han desarrollado muchas


teorías y modelos estadísticos que tratan de
asignar un valor a la posibilidad de que no
suceda lo que nosotros esperamos de una
inversión o a la posibilidad de no obtener el
rendimiento esperado de nuestras inversiones

(Estas serían algunas definiciones de riesgo).


RIESGO

• La definición mas común de riesgo es la de la variabilidad relativa


del retorno esperado (o la desviación estándar del retorno
esperado) respecto del retorno medio, en cuanto a la magnitud
de la variación.
• Mientras mas alta sea la desviación estándar, mayor será la
variabilidad del retorno y, por lo tanto, del riesgo.
PRIMA DE RIESGO

Es el rendimiento excedente requerido de


una inversión en un activo riesgoso, que
supera al rendimiento requerido de una
inversión libre de riesgo.
EL RIESGO Y LA DISTRIBUCIÓN
NORMAL

Las probabilidades que no se pueden verificar en forma objetiva se


denominan probabilidades subjetivas.

La mas observada en la práctica es la que supone una distribución normal,


que indica que, en 67.5% de los casos, los rendimientos caerán dentro de un
rango que está entre el valor promedio del rendimiento +/- una desviación
estándar.

Si al promedio se suman y restan dos desviaciones estándar, el intervalo


incluirá el 95% de los casos. Si se agregan o quitan tres desviaciones estándar,
el intervalo incluirá 99% de los casos
EL RIESGO Y LA
DISTRIBUCIÓN
NORMAL
Dicho de manera sencilla, la tasa
esperada de rendimiento (o
TASA rendimiento esperado) es el promedio
ESPERADA DE ponderado de los resultados posibles,
RENDIMIENTO mientras que los pesos utilizados son las
probabilidades.
TASA ESPERADA DE
RENDIMIENTO
• Cuando en una distribución de probabilidades existe un
número finito o limitado de resultados, esta recibe el
nombre de distribuciones discretas. Por supuesto, en la
realidad, el estado de una economía podría oscilar diversos
escenarios económicos desde una depresión profunda
hasta un fantástico auge, con un número ilimitado de
posibilidades en forma intermedia, generando con ello lo
que se denomina como distribuciones de probabilidad
continuas
TASA ESPERADA DE
RENDIMIENTO
• Ver explicación en archivo: “Riesgo y rendimiento Excel”/
hoja DISTRIB PROB
DESVIACIÓN ESTÁNDAR

Para que sea más útil, cualquier medida del riesgo debe tener
un valor definido, es decir, se necesita una medida de la
estrechez de la distribución de probabilidad. La medida que
se usa con mayor frecuencia es la desviación estándar.
Mientras más pequeña sea la desviación estándar, más
estrecha será la distribución de probabilidad y en
consecuencia, más pequeño será el riesgo de la inversión.
El coeficiente de variación, que muestra
el riesgo por unidad de rendimiento,
proporciona una base de comparación
más significativa cuando los rendimientos
COEFICIENTE esperados de dos o más alternativas, no
DE VARIACIÓN
son los mismos, y todavía es más útil
cuando los niveles de riesgo son
distintos.
TASA ESPERADA DE RENDIMIENTO Y DESVIACIÓN
ESTÁNDAR
Martin products
Rendimiento Desviacion
Escenario Probabilidad del escenario Factor Desviacion cuadrada Producto
(k) (Pk) % (Ak) (Ak * Pk) (Ak-Ay) (Ak-Ay)^2 Pk*(Ak-Ay)^2
Auge 20% 110% 22.00% 95.00% 0.9025 0.1805
Normal 50% 22% 11.00% 7.00% 0.0049 0.00245
Recesion 30% -60% -18.00% -75.00% 0.5625 0.16875
Ay= 15.00% Varianza 35.17%
Tasa esperada de rendimiento
Desviacion estandar 59.30%

Existe un 67.5% de posibilidad de que el rendimiento se sitúe


entre -44.30% y 74.30%

Existe un 95% de posibilidad de que el rendimiento se sitúe


entre -103.61% y 133.61%

Medida de riesgo
Coeficiente de variación = = 3.95
Medida de rendimiento
TASA ESPERADA DE RENDIMIENTO Y DESVIACIÓN
ESTÁNDAR

Ahora calcula la tasa esperada de rendimiento y desviación


estándar para las acciones de la siguiente empresa:

US electric
Rendimiento
Escenario Probabilidad del escenario
(k) (Pk) % (Ak)
Auge 20% 20%
Normal 50% 16%
Recesion 30% 10%
DISTRIBUCIÓN DE PROBABILIDAD

Martin Products
60%

50%

40%
Título del eje

30%
Series1
20%

10%

0%
-80% -60% -40% -20% 0% 20% 40% 60% 80% 100% 120%
Título del eje
DISTRIBUCIÓN DE PROBABILIDAD

US Electric
60%

50%

40%
Título del eje

30%
Series1
20%

10%

0%
0% 5% 10% 15% 20% 25%
Título del eje
RENDIMIENTO DE PORTAFOLIO O
CARTERA

Rendimiento esperado (r^)

AT&T 8%
General Electric 13%
Microsoft 19%
Citigroup 16%
RENDIMIENTO DE PORTAFOLIO O
CARTERA
Rendimiento de cartera

kp= w1k1+ w2k2 +…………+wnkn

Si formamos una cartera de 100,000 dolares, invirtinedo 25,000 dolares en cada


acción, el rendimiento esperado de la cartera sería de :

kp= w1k1+ w2k2 +…………+wnkn

0.25 por 8% = 2.00%


0.25 por 13% = 3.25%
0.25 por 19% = 4.75%
0.25 por 16% = 4.00%
14.00% suma
RENDIMIENTO DE PORTAFOLIO O
CARTERA
El rendimiento esperado de una cartera es:

" Un promedio ponderado de los rendimientos esperados de las


acciones individuales"
DIVERSIFICACIÓN

RIESGO DE CARTERA O PORTAFOLIO

ACCION W PARTICIPACION ACCION M PARTICIPACION CARTERA


AÑO ( kw) EN LA CARTERA ( kw) EN LA CARTERA WM (kp)

2008 40.00% 0.5 -10.00% 0.5 0.15


2009 -10.00% 0.5 40.00% 0.5 0.15
2010 35.00% 0.5 -5.00% 0.5 0.15
2011 -5.00% 0.5 35.00% 0.5 0.15
2012 15.00% 0.5 15.00% 0.5 0.15

Rendimiento promedio
15.00% 15.00% 15.00%

Se ha invertido el 50% del capital en cada accion

-1 Coeficiente de correlación
DIVERSIFICACIÓN

Accion W
0.45
0.4
0.35
0.3
Rendimeintos

0.25
0.2
0.15
0.1 Series1
0.05
0
-0.052007 2008 2009 2010 2011 2012 2013
-0.1
-0.15
Años
DIVERSIFICACIÓN

Accion M
0.45
0.4
0.35
0.3
Rendimientos

0.25
0.2
0.15
0.1 Series1
0.05
0
-0.052007 2008 2009 2010 2011 2012 2013
-0.1
-0.15
Años
DIVERSIFICACIÓN

Portafolio WM
0.150255
Rendimiento

Series1

0.14994
2007 2008 2009 2010 2011 2012 2013
Años
DIVERSIFICACIÓN

RIESGO DE CARTERA O PORTAFOLIO

ACCION M PARTICIPACION ACCION M´ PARTICIPACION CARTERA


AÑO ( kw) EN LA CARTERA ( kw) EN LA CARTERA WM (kp)

2008 -10% 0.5 -10% 0.5 -10%


2009 40% 0.5 40% 0.5 40%
2010 -5% 0.5 -5% 0.5 -5%
2011 35% 0.5 35% 0.5 35%
2012 15% 0.5 15% 0.5 15%

Rendimiento
promedio 15.00% 15.00% 15.00%

Se ha invertido el 50% del capital en cada accion

1 coeficiente de correlacion
DIVERSIFICACIÓN

Accion M
45%
40%
35%
30%
25%
Rendimeintos

20%
15%
Series1
10%
5%
0%
-5%2007.5 2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012 2012.5

-10%
-15%
Años
DIVERSIFICACIÓN

Accion M´
45%
40%
35%
30%
25%
Rendimientos

20%
15%
Series1
10%
5%
0%
-5%2007.5 2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012 2012.5

-10%
-15%
Años
DIVERSIFICACIÓN

Portafolio MM´
45%
40%
35%
30%
25%
Rendimiento

20%
15%
Series1
10%2007.5 2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012 2012.5

5%
0%
-5%
-10%
-15%
Años
DIVERSIFICACIÓN

ACCION W PARTICIPACION ACCION Y PARTICIPACION CARTERA


AÑO ( kw) EN LA CARTERA ( kw) EN LA CARTERA WM (kp)

2008 40% 0.5 28% 0.5 34%


2009 -10% 0.5 20% 0.5 5%
2010 35% 0.5 41% 0.5 38%
2011 -5% 0.5 -17% 0.5 -11%
2012 15% 0.5 3% 0.5 9%

Rendimiento
promedio 15.00% 15.00% 15.00%

Se ha invertido el 50% del capital en cada accion

0.67 coeficiente de correlacion


DIVERSIFICACIÓN

Accion X
0.45
0.4
0.35
0.3
Rendimeintos

0.25
0.2
0.15
0.1 Series1
0.05
0
-0.052007 2008 2009 2010 2011 2012 2013
-0.1
-0.15
Años
DIVERSIFICACIÓN

Accion Y
0.45
0.4
0.35
0.3
Rendimientos

0.25
0.2
0.15
0.1 Series1
0.05
0
-0.052007 2008 2009 2010 2011 2012 2013
-0.1
-0.15
-0.2
Años
DIVERSIFICACIÓN

Portafolio XY
0.45
0.4
0.35
0.3
Rendimiento

0.25
0.2
0.15
0.12006 Series1
2008 2010 2012 2014
0.05
0
-0.05
-0.1
-0.15
Años
BETA Y LA LÍNEA DE MERCADO DE VALORES
rj= rRF+(rM-rRF)Bj

rRF= 5.00% 5.00% 5.00% 5.00% 5.00%


rM= 11.00% 11.00% 11.00% 11.00% 11.00%
Bj= 0.00 0.50 1.00 1.50 2.00

rj= 5.00% 8.00% 11.00% 14.00% 17.00%

18.00%

16.00%

14.00%

12.00%
Título del eje

10.00%

8.00% Series1
Lineal (Series1)
6.00%

4.00%

2.00%

0.00%
0.00 0.50 1.00 1.50 2.00 2.50
Título del eje
BETA Y LA LÍNEA DE MERCADO DE VALORES
rj= rRF+(rM-rRF)Bj

rRF= 7.00% 7.00% 7.00% 7.00% 7.00%


rM= 13.00% 13.00% 13.00% 13.00% 13.00%
Bj= 0.00 0.50 1.00 1.50 2.00

rj= 7.00% 10.00% 13.00% 16.00% 19.00%

20.00%

18.00%

16.00%

14.00%
Título del eje

12.00%
Series1
10.00%
Series2
8.00% Lineal (Series1)
Lineal (Series2)
6.00%

4.00%

2.00%

0.00%
0.00 0.50 1.00 1.50 2.00 2.50
Título del eje

También podría gustarte