Mathematics">
L2 G6 Calculoii Esmc
L2 G6 Calculoii Esmc
L2 G6 Calculoii Esmc
GROHMANN
ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA
MONOGRAFÍA DE LABORATORIO 2
CURSO: CÁLCULO II
GRUPO: 6
ALUMNOS:
Tacna - Perú
INTRODUCCIÓN
En este trabajo daremos un breve repaso sobre los conceptos básicos de la terminología en la
cual se utilizan los símbolos para representar números o variables en operaciones, además,
papel fundamental tanto en la propia Matemática como en otras ciencias como la Física,
Química, etc.
ÍNDICE
1. CONCEPTOS BÁSICOS Y TERMINOLOGÍA 4
1.5 Grado de una Ecuación Diferencial Ordinaria (5 ejercicios) 4
1.6 Solución de una Ecuación Diferencial Ordinaria 4
1.7 Origen de las Ecuaciones Diferenciales Ordinarias (16 ejercicios) 4
1.7.1 Ecuaciones Diferenciales de una Familia de Curva 4
1.7.2 Ecuaciones Diferenciales de Problemas Físicos (6 ejercicios) 11
2. ECUACIONES DIFERENCIALES ORDINARIA DE PRIMER ORDEN Y
PRIMER GRADO 12
2.1 Ecuaciones Diferenciales Ordinarias de Variable Separable (10 ejercicios) 12
2.2 Ecuaciones Diferenciales Ordinarias Reducibles a Variable Separable 16
2.3 Otras Ecuaciones Diferenciales Ordinarias 16
2.4 Ecuaciones Diferenciales Ordinarias Homogéneas 16
2.5 Ecuaciones Diferenciales Reducibles Homogéneas Error! Bookmark not defined.
1. CONCEPTOS BÁSICOS Y TERMINOLOGÍA
Ejercicio 3:
𝑑2 𝑦 𝑑𝑦 𝑑𝑦
. 𝑑𝑥 + (𝑑𝑥 )2 + 𝑦 = 0 → Rpta: Es de 2º orden y 1º grado
𝑑𝑥 2
Ejercicio 5:
𝑑2 𝑦 4 𝑑𝑦
= √𝑦 + (𝑑𝑥 )2 → Rpta: Es de 2º orden y 4º grado
𝑑𝑥 2
Ejercicio 7:
𝑑𝑦 𝑑2 𝑦 𝑑3 𝑦
𝑥4 − 𝑥2 = 𝑦4 → Rpta: Es de 3º orden y 1º grado
𝑑𝑥 𝑑𝑥 2 𝑑𝑥 3
Ejercicio 9:
∫ cos(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 2 𝜃 𝑑𝜃
−1
u= cos𝜃
→ du= -sen𝜃d𝜃
𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)
→ v= 𝑎
dv= cos (t. sen𝜃)cos𝜃 d𝜃
1 1
2
𝑐𝑜𝑠𝜃. 𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃) sen(asen𝜃). 𝑠𝑒𝑛𝜃𝑑𝜃
∫ cos(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝜃 𝑑𝜃 = + ∫
𝑎 𝑎
−1 −1
1 1
sen(asen𝜃). 𝑠𝑒𝑛𝜃𝑑𝜃
+ ∫ cos(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 2 𝜃 𝑑𝜃 = ∫ … (𝑖𝑖)
𝑎
−1 −1
Reemplazando (ii) en (i):
1
𝐻´´(𝑎) + 𝐻´(𝑎) + 𝐻 (𝑎)
𝑎
1 1
sen(asen𝜃). 𝑠𝑒𝑛𝜃𝑑𝜃 sen(asen𝜃). 𝑠𝑒𝑛𝜃𝑑𝜃
= ∫ − ∫ =0
𝑎 𝑎
−1 −1
1
𝑅𝑝𝑡𝑜: 𝐻´´(𝑎) + 𝐻´(𝑎) + 𝐻 (𝑎) = 0 … . . 𝑞𝑞. 𝑑𝑑
𝑎
𝑥
Comprobar que la función 𝑥 = 𝑦 ∫0 𝑠𝑒𝑛𝑡 2 𝑑𝑡 satisface a la ecuación diferencial
𝑦 = 𝑥𝑦´ + 𝑦 2 𝑠𝑒𝑛𝑥 2
Derivando
𝑥
1= 𝑦´ ∫0 𝑠𝑒𝑛𝑡 2 𝑑𝑡 + 𝑦𝑠𝑒𝑛𝑥 2
𝑦 = 𝑥𝑦´ + 𝑦 2 𝑠𝑒𝑛𝑥 2 Si satisface a la ecuación diferencial
𝑅𝑝𝑡𝑎: 𝑦 = 𝐶 1 𝑒 𝑥 + 𝐶 2 𝑒 2𝑥
𝑥 𝑒𝑧
Sea ℎ(𝑥) = ∫1 𝑧
𝑑𝑧 , x > 0 ; hallar los valores de “a” tal que la función f
𝑒 𝑎ℎ(𝑥)
definida por 𝑓(𝑥) = satisface a la ecuación diferencial: 𝑥 2 𝑦´´ +
𝑥
(3𝑥 − 𝑥 2 )𝑦´ + (1 − 𝑥 − 3𝑒 2𝑥 )𝑑𝑦 = 0
Derivando
𝑒 𝑎ℎ(𝑥)
𝑦=
𝑥
𝑎𝑒 𝑥 𝑎ℎ(𝑥) 𝑒 𝑎ℎ(𝑥)
𝑦´ = 3 . 𝑒 − … (𝑖)
𝑥 𝑥2
𝑎𝑒 𝑥 𝑎ℎ(𝑥) 𝑥 3
[(𝑒 𝑥 . 𝑒 𝑎ℎ(𝑥) + . 𝑒 ) 𝑥 − 3𝑥 2 𝑎𝑒 𝑥 . 𝑒 𝑎ℎ(𝑥) ]
𝑥 .𝑒
𝑦´´ = 𝑎 −
𝑥6
𝑥
𝑒
[𝑎 . 𝑒 𝑎ℎ(𝑥) . 𝑥 2 − 2𝑥𝑒 𝑎ℎ(𝑥) ]
𝑥
… (𝑖𝑖)
𝑥4
Multiplicando a (𝑖)(3𝑥 − 𝑥 2 )
𝑎𝑒 𝑥 𝑒 𝑎ℎ(𝑥) (3 − 𝑥)𝑒 𝑎ℎ(𝑥)
(3𝑥 − 𝑥 2 )𝑦´ = (3 − 𝑥) −
𝑥2 𝑥
Multiplicando (𝑥 2 ) 𝑎 (𝑖𝑖)
𝑒 𝑥 . 𝑒 𝑎ℎ(𝑥) 𝑎𝑒 2𝑥 𝑒 𝑎ℎ(𝑥) 3𝑎𝑒 𝑥 𝑒 𝑎ℎ(𝑥) 𝑒 𝑥 𝑒 𝑎ℎ(𝑥) 2𝑒 𝑎ℎ(𝑥)
𝑥 2 𝑦´´ = 𝑎 [ + − ] − [𝑎 − ]
𝑥 𝑥2 𝑥2 𝑥 𝑥
Multiplicando a(1 − x − 3𝑒 2𝑥 ) y:
𝑒 𝑎ℎ(𝑥) 3𝑒 2𝑥 . 𝑒 𝑎ℎ(𝑥)
(1 − x − 3𝑒 2𝑥 )𝑦 = − 𝑒 𝑎ℎ(𝑥) −
𝑥 𝑥
Sumando los nuevos valores:
−3𝑎2 𝑒 𝑥 𝑒 𝑎ℎ(𝑥) 𝑎2 𝑒 2𝑥 𝑒 𝑎ℎ(𝑥) 3𝑎𝑒 𝑥 𝑒 𝑎ℎ(𝑥) 𝑎𝑒 𝑥 𝑒 𝑎ℎ(𝑥) 3𝑒 2𝑥 𝑒 𝑎ℎ(𝑥)
+ + − − =0
𝑥2 𝑥2 𝑥2 𝑥 𝑥
−3𝑎2 𝑎2 𝑒 𝑥 3𝑎
+ + − 𝑎 − 3𝑒 𝑥 = 0
𝑥 𝑥 𝑥
−3𝑎2 𝑎2 𝑒 𝑥 3𝑎
𝑅𝑝𝑡𝑎: + + − 𝑎 − 3𝑒 𝑥 = 0
𝑥 𝑥 𝑥
1 𝑠𝑒𝑛𝑎𝑡𝑑𝑡
Dada la función 𝐻(𝑎) = ∫−1 √1−𝑡 2
, 𝑎 ≠ 0 ; probar que 𝐻 (𝑎) satisface a la
1
ecuación diferencial 𝐻´´(𝑎) + 𝑎
𝐻´(𝑎) + 𝐻(𝑎) = 0
Derivando:
1
𝑠𝑒𝑛𝑎𝑡𝑑𝑡
𝐻 (𝑎) = ∫
√1 − 𝑡 2
−1
Cambio de variable: t=𝑠𝑒𝑛𝜃 dt=𝑐𝑜𝑠𝜃𝑑𝜃
1 1
𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠𝜃𝑑𝜃
𝐻 (𝑎) = ∫ = ∫ 𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)𝑑𝜃
𝑐𝑜𝑠𝜃
−1 −1
1
𝐻´(𝑎) = ∫ 𝑐𝑜𝑠(𝑎𝑠𝑒𝑛𝜃)𝑠𝑒𝑛𝜃𝑑𝜃
−1
1
∫ 𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 2 𝜃𝑑𝜃
−1
u= cos𝜃
→ du= -sen𝜃d𝜃
→ v=−cos(𝑎𝑠𝑒𝑛𝜃)
dv=𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠𝜃𝑑𝜃
1 1
cos(𝑎𝑠𝑒𝑛𝜃) 𝑠𝑒𝑛𝜃𝑑𝜃
∫ 𝑠𝑒𝑛(𝑎𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 2 𝜃𝑑𝜃 = (0 − 0) − ∫ … (𝑖𝑖)
𝑎
−1 −1
Reemplazando (ii) en (i):
1 1
1 cos(𝑎𝑠𝑒𝑛𝜃) 𝑠𝑒𝑛𝜃𝑑𝜃 cos(𝑎𝑠𝑒𝑛𝜃) 𝑠𝑒𝑛𝜃𝑑𝜃
𝐻´´(𝑎) + 𝐻´(𝑎) + 𝐻 (𝑎) = − ∫ + ∫
𝑎 𝑎 𝑎
−1 −1
1
𝑅𝑝𝑡𝑎: 𝐻´´(𝑎) + 𝐻´(𝑎) + 𝐻 (𝑎) = 0
𝑎
𝑒 𝑑𝑡
Dada la función 𝑦 = 𝐶¡ 𝐿𝑛 𝑥 + 𝐶𝑥 ∫𝑥 𝐿𝑛(𝑡) , x > 1, satisface a la ecuación
diferencial 𝑥 2 𝐿𝑛2 𝑥𝑦´´ − 𝑥𝐿𝑛𝑥. 𝑦´ + (𝐿𝑛𝑥 + 1)𝑦 = 0
𝑒
𝐶1 𝑑𝑡 1
𝑦´ = + 𝐶2 [∫ − ] … (𝑖)
𝑥 𝐿𝑛(𝑡) 𝐿𝑛(𝑥)
𝑥
1
−𝐶1 1 (𝐿𝑛𝑥 − ( ) 𝑥)
𝑥
𝑦´´ = 2 + 𝐶2 [− − 2
] … (𝑖𝑖)
𝑥 𝐿𝑛(𝑡𝑥) 𝐿𝑛 𝑥
1 𝑑𝑥
Probar que la función x(t) definida por: 𝑥(𝑡) = ∫0 (𝑥 2+𝑡 2)2
, satisface a la
1
ecuación diferencial 𝑡 𝑥´ + 3𝑥 (𝑡) + (1+𝑡 2)2 = 0
1
𝑑𝑥
𝑥(𝑡) = ∫
(𝑥 2 + 𝑡 2 )2
0
1 1
𝑥 (𝑡)´ = −
(1 + 𝑡 2 )2 𝑡 4
1
1 1 1 𝑑𝑥 1
𝑡𝑥´(𝑡) + 3𝑥 (𝑡) + 2 2
= 𝑡( 2 2
− 4) + 3 ∫ 2 2 2
+
(1 + 𝑡 ) (1 + 𝑡 ) 𝑡 (𝑥 + 𝑡 ) (1 + 𝑡 2 )2
0
1
𝑡𝑥´(𝑡) + 3𝑥 (𝑡) + = (𝑁𝑜 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑎 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙)
(1 + 𝑡 2 )2
𝑅𝑝𝑡𝑎: (𝑁𝑜 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑎 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑙)
1
𝑦 𝜋/2
Probar que 𝑥 = ∫0 cos(𝑚𝑥 𝑛 𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝑛 𝜃𝑑𝜃, satisface a la ecuación
diferencial 𝑦´´ + 𝑚 2 𝑛2 𝑥 2𝑛−2 𝑦 = 0
𝜋/2
1
𝑦 = ∫ cos(𝑚𝑥 𝑛 𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝑛 𝜃𝑑𝜃
0
𝜋/2
1
𝑦´ = ∫ cos(𝑚𝑥 𝑛 𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝑛 𝜃𝑑𝜃
0
1 1
+ 𝑥 (cos(𝑚𝑥 𝑛 𝑠𝑒𝑛90) 𝑐𝑜𝑠 𝑛 90 − 𝑐𝑜𝑠(𝑚𝑥 𝑛 𝑠𝑒𝑛0)𝑐𝑜𝑠 𝑛 0)
𝜋/2
1
𝑦´ = ∫ cos(𝑚𝑥 𝑛 𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝑛 𝜃𝑑𝜃 − 𝑥
0
𝑦´´ = −1
𝜋/2
1
𝑦´´ + 𝑚 2 𝑛2 𝑥 2𝑛−2 𝑦 = −1 + 𝑚 2 𝑛2 𝑥 2𝑛−2 (𝑥 ∫ cos(𝑚𝑥 𝑛 𝑠𝑒𝑛𝜃)𝑐𝑜𝑠 𝑛 𝜃𝑑𝜃)
0
𝜋/2
Demostrar que la función 𝑦 = ∫0 log(𝑠𝑒𝑛2 𝜃 + 𝑥 2 𝑐𝑜𝑠 2 𝜃) 𝑑𝜃 satisface a la
(𝑥+1)
ecuación diferencial (1 + 𝑥)2 𝑦´´ + (1 + 𝑥)𝑦´ + 𝑦 = 𝜋𝑙𝑜𝑔 2
Sea:
𝜋/2
𝑦 = ∫ log(𝑠𝑒𝑛2 𝜃 + 𝑥 2 𝑐𝑜𝑠 2 𝜃) 𝑑𝜃
0
𝑦´ = log(1) − log(𝑥 2 )
2
𝑦´´ = −
𝑥
2
(1 + 𝑥)2 𝑦´´ + (1 + 𝑥)𝑦´ + 𝑦 = (1 + 𝑥)2 (− ) + (1 + 𝑥) log(1) − log(𝑥 2 )
𝑥
𝜋/2 2 2 2
+𝑦 (∫0 log(𝑠𝑒𝑛 𝜃 + 𝑥 𝑐𝑜𝑠 𝜃) 𝑑𝜃)
∞ 2 −( 𝑡 )2
Si G(t) = ∫0 𝑒 −𝑥 𝑥 𝑑𝑥, 𝑡 > 0, probar que G´(t) + 2𝐺 (𝑡) = 0
∞
2 −( 𝑡 )2
G(t) = ∫ 𝑒 −𝑥 𝑥 𝑑𝑥
0
∞
2
2 −( 𝑡 ) 𝑡 𝑥
G´(t) = − ∫ 𝑒 −𝑥 𝑥 . 2 ( ) . ( 2 ) 𝑑𝑥
𝑥 𝑥
0
∞
𝑡 𝑡 2
−𝑥 2−( )
G´(t) + 2 2 ∫ 𝑒 𝑥 . 𝑑𝑥 = 0
𝑥
0
1
Probar que la función 𝑦(𝑡) = ∫0 𝑠𝑒𝑛(𝑡 − 𝑠)𝑓 (𝑠)𝑑𝑠 es una solución en 1 de
𝑦´´(𝑡) + 𝑦(𝑡) = 𝑓(𝑡), que satisface y(0) =y´(0) =0, donde f es una función
continua sobre el intervalo I, el cual contiene al cero.
1
ℎ(𝑦)
F´(y) = D(y) ∫ 𝐷𝑦𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑓(ℎ (𝑦), 𝑦)ℎ´(𝑦) − 𝑓 (𝑔(𝑦), 𝑦)𝑔´(𝑦)
𝑔(𝑦)
1
√𝑥 2 𝑑𝑦 𝑒 −𝑥
Comprobar que 𝑦 = 2 ∫0 𝑒 −𝑠 𝑑𝑠 + 𝑐 es solución de 𝑑𝑥 =
√𝑥
√𝑥
2
𝑦 = 2 ∫ 𝑒 −𝑠 𝑑𝑠 + 𝑐
0
𝑑𝑦 2 1
= 0 + 2𝑒 −𝑥 . +0
𝑑𝑥 2√𝑥
2
𝑑𝑦 𝑒 −𝑥
𝑅𝑝𝑡𝑎: 𝑑𝑥
= … 𝑞𝑞. 𝑑𝑑
√𝑥
𝑠𝑒𝑛2𝑥𝑑𝑥 = −𝑐𝑜𝑠3𝑥𝑑𝑦
∫ 𝑠𝑒𝑛2𝑥𝑑𝑥 = ∫ −𝑐𝑜𝑠3𝑥𝑑𝑦
∫ 𝑠𝑒𝑛2𝑥𝑑𝑥 = − ∫ 𝑐𝑜𝑠3𝑥𝑑𝑦
𝑐𝑜𝑠2𝑥 𝑠𝑒𝑛3𝑦 𝜋 𝜋
− +𝑐 = − → 𝑥= ,𝑦 =
2 3 2 3
𝜋 𝜋
𝑐𝑜𝑠2 ( 2 ) 𝑠𝑒𝑛3 3
− +𝑐 = −
2 3
−1
− +𝑐 = 0
2
1
𝑐=−
2
𝑐𝑜𝑠2𝑥 1 𝑠𝑒𝑛3𝑦
∴− − + =0
2 2 3
𝑑𝑦 𝑥 𝑥
𝑑𝑥
= 𝑦 − 1+𝑦 𝑦(0) = 1 𝑥 = 0, 𝑦 = 1
𝑑𝑦 𝑥(1 + 𝑦) − 𝑥. 𝑦
=
𝑑𝑥 𝑦(1 + 𝑦)
𝑑𝑦. (𝑦 + 𝑦 2 ) = 𝑥. 𝑑𝑥
∫ 𝑦. 𝑑𝑦 + ∫ 𝑦 2 𝑑𝑥 = ∫ 𝑥. 𝑑𝑥
𝑦2 𝑦3 𝑥2
+ +𝑐 = 𝑥 = 0, 𝑦 = 1
2 3 2
2 3
1 1 02
+ +𝑐 =
2 3 2
5
𝑐=−
6
𝑦 2 𝑦 3 5 𝑥2
∴ + − =
2 3 6 2
𝑅𝑝𝑡 = 3𝑦 2 + 2𝑦 2 = 3𝑥 2 + 5
1−𝑐𝑜𝑠2𝑥 𝑑𝑦 𝜋
√ 1+𝑠𝑒𝑛𝑦 + 𝑑𝑥 = 0 𝑦( ) = 0
4
𝑑𝑦 𝜋
, 𝑠𝑒𝑛𝑥𝑥 = 𝑦𝑙𝑛𝑦 𝑦( ) = 𝑒
𝑑𝑥 2
𝑑𝑦 𝑑𝑥
=
𝑦𝑙𝑛𝑦 𝑠𝑒𝑛𝑥
1 1 𝑑𝑥
∫ . 𝑑𝑥 = ∫
𝑙𝑛𝑥 𝑥 𝑠𝑒𝑛𝑥
1 𝑥
∫ . 𝑑𝑢 = ln (𝑡𝑔 ( ))
𝑢 2
𝑥
𝑙𝑛𝑢 = ln (𝑡𝑔 ( ))
2
𝑥
ln(𝑙𝑛𝑦 ) = ln (𝑡𝑔 ( ))
2
𝑥
ln(𝑙𝑛𝑦) ln(𝑡𝑔( ))
2
𝑒𝑒 = 𝑒𝑒
𝑥
𝑅𝑝𝑡 ∶ 𝑦 = 𝑒 𝑡𝑔(2)
2
𝑅𝑝𝑡 = = 𝑦2 + 1
1 − 𝑥2
𝑥𝑑𝑥 + 𝑦𝑒 −𝑥 𝑑𝑦 = 0 𝑦(0) = 1
𝑥𝑑𝑥
−∫ = ∫ 𝑦𝑑𝑦
𝑒 −𝑥
𝑥𝑒 𝑥 − ∫ 𝑒 𝑥 𝑑𝑥 = − ∫ 𝑦𝑑𝑦
𝑦2
𝑒 𝑥 (𝑥 − 1) + 𝑐 = −
2
1
𝑒 0 (0 − 1) + 𝑐 = −
2
𝑐=1
𝑅𝑝𝑡: 𝑦 = −2𝑐𝑜𝑠 3 2𝑥
(1 + 𝑒 𝑥 )𝑦𝑦´ = 𝑒 𝑦 𝑦(0) = 0
𝑦𝑑𝑦 𝑑𝑥
𝑦
=
𝑒 1 + 𝑒𝑥
𝑑𝑡
𝑦−𝑒 − ∫ −𝑒 𝑑𝑦 = ∫ 𝑡
−𝑦 −𝑦
𝑡+1
1 + 𝑡 − 𝑡
−𝑦𝑒 −𝑦 − 𝑒 −𝑦 = ∫ 𝑑𝑡
𝑡(𝑡 + 1)
1+𝑡 𝑡
−𝑒 −𝑦 (𝑦 + 1) = ∫ 𝑑𝑡 − ∫ 𝑑𝑡
𝑡(𝑡 + 1) 𝑡(𝑡 + 1)
𝑑𝑡 𝑡
−𝑒 −𝑦 (𝑦 + 1) = ∫ − ∫
𝑡 𝑡+1
𝑡 +1
−𝑒 −𝑦 (𝑦 + 1) = 𝑙𝑛𝑡 − ln ( )+𝑐
2
𝑒𝑥 + 1
−𝑒 −𝑦 (𝑦 + 1) = 𝑥 − ln ( )+𝐶
2
𝑒0 + 1
−𝑒 −0 (0 + 1) = 0 − ln ( )+𝐶
2
𝑐=1
−𝑦
𝑒𝑥 + 1
𝑅𝑝𝑡: (1 + 𝑦)𝑒 = ln ( )−1+𝑥
2
𝑑𝑟 𝑠𝑒𝑛𝜃+𝑒 2𝑟 𝑠𝑒𝑛𝜃 𝜋
= 𝑟( ) = 0
𝑑𝜃 3𝑒 𝑟 +𝑒 𝑟 𝑐𝑜𝑠𝜃 2
1 1
2∫ 𝑑𝑟 = ∫ 𝑑𝜃
𝑒𝑟
+1 𝑐𝑜𝑠𝜃 + 1
2𝑎𝑟𝑐𝑡𝑔(𝑒 𝑟 ) + 𝑎𝑟𝑐𝑡𝑔(𝑐𝑜𝑠𝜃) − 𝑐 = 0
𝑐𝑜𝑠𝜋
2𝑎𝑟𝑐𝑡𝑔(𝑒 0 ) + 𝑎𝑟𝑐𝑡𝑔 ( )−𝑐 = 0
2
𝜋
𝑐=
2
𝜋
𝑅𝑝𝑡: 2𝑎𝑟𝑐𝑡𝑔(𝑒 𝑟 ) + 𝑎𝑟𝑐𝑡𝑔(𝑐𝑜𝑠𝜃) =
2
𝑅𝑝𝑡: 𝑦 = 2𝑥 2 + 2
𝑑𝑥
𝑥. 𝑑𝑦 = 2(𝑦 − √𝑥𝑦)𝑑𝑥 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
2
2(𝑢𝑥 − √𝑥 2 𝑢 − 𝑥𝑢)𝑑𝑥 = 𝑥 𝑑𝑢 .
2(−√𝑥 2 𝑢)𝑑𝑥 = 𝑥 2 𝑑𝑢 .
(−2𝑥 √𝑢)𝑑𝑥 = 𝑥 2 𝑑𝑢 .
−2√𝑢𝑑𝑥 = 𝑥𝑑𝑢 .
𝑑𝑥 𝑑𝑢
∫ =∫ .
𝑥 −2√𝑢
−1 1
𝐼𝑛𝑥 = 2
. ∫ 𝑑𝑢 .
√𝑢
−1
𝐼𝑛𝑥 = 2
. 2√𝑢 .
𝐼𝑛𝑥 = −√𝑢 + 𝑐 .
𝑦
𝑅𝑝𝑡𝑎: 𝐼𝑛𝑥 = −√ + 𝑐
𝑥
−𝑦
𝑥𝑦 ′ = 𝑦 + 2𝑥𝑒 𝑥
−𝑦
𝑑𝑦
𝑥. 𝑑𝑥 = 𝑦 + 2𝑥𝑒 𝑥 .
−𝑦/𝑥 )𝑑𝑥
𝑥 𝑑𝑦 = (𝑦 + 2𝑥𝑒 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑥 2 𝑑𝑢 = 2𝑥𝑒 −𝑢 𝑑𝑥 .
𝑑𝑢 𝑑𝑥
∫ 2𝑒 −𝑢 = ∫ 𝑥
.
1
𝑥
. ∫ 𝑒 𝑢 = 𝐼𝑛𝑥 .
𝑒𝑢
= 𝐼𝑛𝑥 .
2
𝑒 𝑦/𝑥
𝑅𝑝𝑡𝑎: = 𝐼𝑛𝑥
2
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
4𝑥 2 𝑑𝑥 + 4𝑢2 𝑥 2 𝑑𝑥 − 𝑥 2 𝑢2 𝑑𝑥 − 𝑥 3 𝑢𝑑𝑢 = 0 .
4𝑥 2 𝑑𝑥 + 3𝑥 2 𝑢2 𝑑𝑥 = 𝑥 3 𝑢𝑑𝑢 .
(4 + 3𝑢2 )𝑑𝑥 = 𝑥 𝑢 𝑑𝑢 .
𝑑𝑥 𝑢𝑑𝑢
∫ 𝑥
= ∫ (4+3𝑢2) .
1
𝐼𝑛𝑥 = ∫ 𝑑𝑣 .
6𝑣
1
𝐼𝑛𝑥 = 𝐼𝑛𝑣 .
6
1
𝐼𝑛𝑥 = 𝐼𝑛 (4 + 3𝑢2 ) .
6
1 𝑦 2
𝑅𝑝𝑡𝑎: 𝐼𝑛𝑥 = 𝐼𝑛 (4 + 3 ( ) )
6 𝑥
2 2
𝑦𝑑𝑥 = (𝑥 + √𝑦 − 𝑥 )𝑑𝑦
𝑦𝑑𝑥 = (𝑥 + √𝑦 2 − 𝑥 2 )𝑑𝑦 = 0 .
𝑦 = 𝑢𝑥.
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
2 2
𝑢𝑥𝑑𝑥 − 𝑥𝑢𝑑𝑥 − 𝑥 𝑑𝑢 − 𝑥√𝑢2 − 1𝑢𝑑𝑥 + 𝑥 √𝑢2 − 1𝑑𝑢 = 0 .
1+√𝑢2 −1 𝑑𝑥
∫ 𝑑𝑢 = ∫ −𝑥
𝑢√𝑢2−1
.
1 √𝑢2−1
∫ 𝑢√𝑢2 −1 + 𝑢√𝑢2 −1 𝑑𝑢 =. 𝐼𝑛𝑥 .
1 √𝑢2−1
∫ 𝑢√𝑢2 −1 + 𝑢√𝑢2 −1 𝑑𝑢 = −𝐼𝑛𝑥 .
𝑦
𝑅𝑝𝑡𝑎: 𝑎𝑟𝑠𝑒𝑐 ( ) + 𝐼𝑛𝑦𝑥 = −𝐼𝑛𝑥
𝑥
𝑥𝑑𝑦 − 𝑦𝑑𝑥 = √𝑥 2 + 𝑦 2 𝑑𝑥
𝑥𝑑𝑦 − 𝑦𝑑𝑥 − √𝑥 2 + 𝑦 2 𝑑𝑥 = 0 .
𝑥𝑑𝑦 − (𝑦 + √𝑥 2 + 𝑦 2 )𝑑𝑥 = 0 .
𝑦 = 𝑢𝑥.
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
2
𝑥𝑢𝑑𝑥 + 𝑥 𝑑𝑢 − 𝑢𝑥𝑑𝑥 − 𝑥√1 + 𝑢2 𝑑𝑥 =0 .
2
𝑥 𝑑𝑢 = 𝑥√1 + 𝑢2 𝑑𝑥 .
𝑥𝑑𝑢 = √1 + 𝑢2 𝑑𝑥 .
𝑑𝑢 𝑑𝑥
∫ √1+𝑢2 = ∫ 𝑥
.
𝑦 𝑦 2
𝑅𝑝𝑡𝑎: 𝐼𝑛 ( + √( ) + 1) = 𝐼𝑛𝑥
𝑥 𝑥
𝑥𝑦 2 𝑑𝑦 + (𝑥 3 − 𝑦 3 )𝑑𝑥 = 0
𝑦 = 𝑢𝑥.
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑥 3 𝑢3 (𝑢𝑑𝑥 + 𝑥𝑑𝑢) + 𝑥 3 𝑑𝑥 − 𝑢3 𝑥 3 𝑑𝑥 = 0 .
𝑥 3 𝑢3 𝑑𝑥 + 𝑥 4 𝑢2 𝑑𝑢 + 𝑥 3 𝑑𝑥 − 𝑢3 𝑥 3 𝑑𝑥 = 0 .
𝑥 4 𝑢2 𝑑𝑢 = −𝑥 3 𝑑𝑥 .
𝑥𝑢2 𝑑𝑢 = −𝑑𝑥 .
𝑑𝑢 −𝑑𝑥
∫ 𝑢2 . 1 =∫ 𝑥
.
𝑢3
+ 𝑐 = −𝐼𝑛𝑥 .
3
𝑦 3
( )
𝑅𝑝𝑡𝑎: 𝑥 + 𝑐 = −𝐼𝑛𝑥
3
2𝑥𝑦
𝑦 ′ = 3𝑥 2−𝑦2
𝑑𝑦 2𝑥𝑦
= 3𝑥 2−𝑦 2 .
𝑑𝑥
(3𝑥 2 − 𝑦 2 )𝑑𝑦 = (2𝑥𝑦)𝑑𝑥 .
𝑦 = 𝑢𝑥.
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
3𝑥 2 𝑢𝑑𝑥 + 3𝑥 3 𝑑𝑢 − 𝑢3 𝑥 2 𝑑𝑥 − 𝑢2 𝑥 3 𝑑𝑢 − 2𝑥 2 𝑢𝑑𝑥 = 0 .
𝑥 2 𝑢𝑑𝑥 + 𝑢3 𝑥 2 𝑑𝑥 = 𝑢2 𝑥 3 𝑑𝑢 − 3𝑥 3 𝑑𝑢 .
𝑑𝑥 (𝑢2 −3)𝑑𝑢
∫ 𝑥
=∫ (𝑢−𝑢3)
.
(𝑥√𝑥 2 + 𝑦 2 − 𝑦 2 )𝑑𝑥 + 𝑥𝑦 𝑑𝑦 = 0
𝑦 = 𝑢𝑥.
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
(𝑥 2 √1 + 𝑢2 − 𝑢2 𝑥 2 )𝑑𝑥 + 𝑥 2 𝑢2 𝑑𝑥 + 𝑥 2 𝑢 𝑑𝑢 = 0 .
𝑥 2 √1 + 𝑢2 𝑑𝑥 − 𝑢2 𝑥 2 𝑑𝑥 + 𝑥 2 𝑢2 𝑑𝑥 + 𝑥 2 𝑢 𝑑𝑢 = 0 .
(𝑥 2 √1 + 𝑢2 )𝑑𝑥 = −𝑥 2 𝑢 𝑑𝑢 .
√1 + 𝑢2 𝑑𝑥 = −𝑥𝑢 𝑑𝑢 .
𝑑𝑥 𝑢𝑑𝑢
∫ −𝑥 = ∫ √1+𝑢2 .
−𝐼𝑛𝑥 = √1 + 𝑢2 .
𝑦 2
𝑅𝑝𝑡𝑎: − 𝐼𝑛𝑥 = √1 + ( )
𝑥
𝑦 𝑦
(𝑥 + 𝑦 𝑠𝑒𝑛 (𝑥 )) 𝑑𝑥 − 𝑥𝑠𝑒𝑛 (𝑥 ) 𝑑𝑦 = 0
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑢𝑥 𝑢𝑥
(𝑥 + 𝑢𝑥𝑠𝑒𝑛 ( 𝑥 )) 𝑑𝑥 − 𝑥𝑠𝑒𝑛 ( 𝑥 ) (𝑢𝑥 + 𝑥𝑑𝑢) = 0 .
𝑑𝑥 = 𝑥 𝑠𝑒𝑛 𝑢𝑑𝑢 .
𝑑𝑥
∫ = ∫ 𝑠𝑒𝑛 𝑢𝑑𝑢 .
𝑥
𝐼𝑛𝑥 = − cos 𝑢 + 𝑐 .
𝑦
𝑅𝑝𝑡𝑎: 𝐼𝑛𝑥 + 𝑐𝑜𝑠 ( ) = 𝑐
𝑥
(2𝑥𝑦 + 𝑥 2 )𝑦 ′ = 3𝑦 2 + 2𝑥𝑦
𝑑𝑦
(2𝑥𝑦 + 𝑥 2 ) = 3𝑦 2 + 2𝑥𝑦 .
𝑑𝑥
(2𝑥𝑦 + 𝑥 𝑑𝑦 = (3𝑦 + 2𝑥𝑦)𝑑𝑥 2) 2
.
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑑𝑥 𝑑𝑢(2𝑢−1)
∫ −𝑥 = ∫ (−𝑢2 +𝑢−2𝑢) .
2𝑢−1
−𝐼𝑛 𝑥 = ∫ 𝑑𝑢
−𝑢2 −𝑢
.
1 3
−𝐼𝑛 𝑋 = ∫ 𝑢 − 𝑢+1 𝑑𝑢 .
−𝐼𝑛 𝑥 = 𝐼𝑛 𝑢 − 3𝐼𝑛 (𝑢 + 1) + 𝑐 .
𝑦 𝑦
𝑅𝑝𝑡𝑎: 𝐼𝑛 𝑥 = 𝐼𝑛 ( ) − 3𝐼𝑛 ( + 1) + 𝑐
𝑥 𝑥
2𝑥𝑦 ′ (𝑥 2 + 𝑦 2 ) = 𝑦(𝑦 2 + 2𝑥 2 )
𝑑𝑦
2𝑥 𝑑𝑥 (𝑥 2 + 𝑦 2 ) = 𝑦(𝑦 2 + 2𝑥 2 ) .
2 2) 2 2)
2𝑥 (𝑥 + 𝑦 𝑑𝑦 = 𝑦(𝑦 + 2𝑥 𝑑𝑥 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
2𝑥 4 𝑢2 𝑑𝑢 + 2𝑥 3 𝑢3 𝑑𝑥 + 2𝑥 4 𝑢2 𝑑𝑢 − 𝑢3 𝑥 3 𝑑𝑥 = 0 .
4𝑥 4 𝑢2 𝑑𝑢 = −𝑥 3 𝑢3 𝑑𝑥 .
4𝑥 𝑑𝑢 = −𝑢𝑑𝑥 .
𝑑𝑢 𝑑𝑥
∫ −𝑢 = ∫ 4𝑥 .
1
−𝐼𝑛 𝑢 = 4 𝐼𝑛 𝑥 .
𝑦 1
𝑅𝑝𝑡𝑎: − 𝐼𝑛 ( ) = 𝐼𝑛 𝑥
𝑥 4
𝑥𝑦 2 𝑑𝑦 − (𝑥 3 + 𝑦 3 )𝑑𝑥 = 0
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑥 3 𝑢2 (𝑢𝑑𝑥 + 𝑥𝑑𝑢) = 𝑥 3 𝑑𝑥 − 𝑢3 𝑥 3 𝑑𝑥 = 0 .
𝑥 4 𝑢3 𝑑𝑥 + 𝑥 4 𝑢2 𝑑𝑢 − 𝑥 3 𝑑𝑥 − 𝑢3 𝑥 3 𝑑𝑥 = 0 .
𝑥 4 𝑢2 𝑑𝑢 = 𝑥 3 𝑑𝑥 .
𝑥𝑢2 𝑑𝑢 = 𝑑𝑥 .
𝑑𝑥
∫ 𝑢2 𝑑𝑢 = ∫ 𝑥
.
𝑢3
3
= 𝐼𝑛 𝑥 .
𝑦 3
( )
𝑅𝑝𝑡𝑎: 𝑥 = 𝐼𝑛 𝑥 + 𝑐
3
𝑑𝑦 𝑦 𝑦2
𝑑𝑥
= 𝑥 + √𝑥 2 − 1
𝑦 𝑦2
𝑑𝑦 = (𝑥 + √𝑥 2 − 1) 𝑑𝑥 .
𝑦 𝑦2
𝑑𝑦 − (𝑥 √𝑥 2 − 1) 𝑑𝑥 = 0 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑢𝑥 𝑢2 𝑥 2
(𝑢𝑑𝑥 + 𝑥𝑑𝑢) − ( + √ 2 − 1) 𝑑𝑥 = 0
𝑥 𝑥
𝑑𝑢 𝑑𝑥
∫ √𝑢2−1 = ∫ 𝑥
.
𝐼𝑛(𝑢 + √𝑢2 − 1) = 𝐼𝑛 𝑥 .
𝑦 𝑦
𝑅𝑝𝑡𝑎: 𝐼𝑛 ( + √ − 1) = 𝐼𝑛 𝑥
𝑥 𝑥
𝑑𝑦
2𝑥 3 𝑑𝑥 + (𝑦 3 − 𝑥 2 𝑦) = 0
2𝑥 2 𝑦 ′ = −(𝑦 3 − 𝑥 2 𝑦) .
𝑑𝑦
2𝑥 3 𝑑𝑥 3
= −(𝑦 − 𝑥 𝑦) 2
.
2𝑥 𝑑𝑦 + (𝑦 3 − 𝑥 2 𝑦)𝑑𝑥 = 0
3
.
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
3 4 3 3 3
2𝑥 𝑢𝑑𝑥 + 2𝑥 𝑑𝑢 + 𝑢 𝑥 𝑑𝑥 − 𝑥 𝑢𝑑𝑥 = 0 .
𝑥 3 𝑢𝑑𝑥 + 𝑢3 𝑥 3 𝑑𝑥 = −2𝑥 4 𝑑𝑢 .
(𝑢 + 𝑢3 )𝑑𝑥 = −2𝑥𝑑𝑢 .
𝑑𝑥 𝑑𝑢
∫ −2𝑥 = ∫ (𝑢+𝑢2) .
−1 𝑦 1 𝑦 2
𝑅𝑝𝑡𝑎: 𝐼𝑛 𝑥 = 𝐼𝑛 ( ) − 𝐼𝑛 (1 + ( ) )
2 𝑥 2 𝑥
2 ′ 2
𝑥 𝑦 = 𝑦 + 3𝑥𝑦 + 2𝑥 2
𝑥 2 𝑑𝑦 = (𝑦 2 + 3𝑥𝑦 + 2𝑥 2 )𝑑𝑥 .
𝑥 2 𝑑𝑦 − (𝑦 2 + 3𝑥𝑦 + 2𝑥 2 )𝑑𝑥 = 0 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
−2𝑥 2 𝑢𝑑𝑥 − 𝑢2 𝑥 2 𝑑𝑥 − 2𝑥 2 𝑑𝑥 = −𝑥 3 𝑑𝑢 .
𝑥 2 (−2𝑢 − 𝑢2 − 2)𝑑𝑥 = −𝑥 3 𝑑𝑢 .
(−2𝑢 − 𝑢2 − 2)𝑑𝑥 = −𝑥 𝑑𝑢 .
𝑑𝑥 𝑑𝑢
∫ =∫
−𝑥 (−2𝑢 − 𝑢2 − 2)
𝑑𝑥 𝑑𝑢
∫ =∫ 2
−𝑥 −1(𝑢 + 2𝑢 + 2)
ln(𝑥) + 𝐶 = arctan(𝑢 + 1) .
𝑦
𝑅𝑝𝑡𝑎: ln(𝑥) + 𝐶 = arctan(𝑥 + 1) .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
2 3 2
𝑢𝑥√𝑥 2 + 𝑢2 𝑥 2 𝑑𝑥 − 𝑥 𝑢𝑑𝑥 − 𝑥 𝑑𝑢 − 𝑥𝑢√𝑥 2 + 𝑢2 𝑥 2 − 𝑥 √𝑥 2 + 𝑢2 𝑥 2 𝑑𝑢 = 0 .
−𝑥 2 𝑢𝑑𝑥 = 𝑥 3 𝑑𝑢 + 𝑥 2 √𝑥 2 + 𝑢2 𝑥 2 𝑑𝑢 .
−𝑥 2 𝑢𝑑𝑥 = 𝑥 2 (𝑥 + √𝑥 2 + 𝑢2 𝑥 2 )𝑑𝑢 .
𝑅𝑝𝑡𝑎: − 𝑢𝑑𝑥 = (𝑥 + √𝑥 2 + 𝑢2 𝑥 2 ) 𝑑𝑢
𝑦
𝑦𝑑𝑥 + 𝑥 (𝐼𝑛 (𝑥 ) − 2) 𝑑𝑦 = 0
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑢𝑥
𝑢𝑥𝑑𝑥 + 𝑥 (𝐼𝑛 ( ) − 2) (𝑢𝑑𝑥 + 𝑥𝑑𝑢) = 0 .
𝑥
𝑢𝑥𝑑𝑥 + 𝑥 (𝑥 (𝐼𝑛𝑢) − 2𝑥)(𝑢𝑑𝑥 + 𝑥𝑑𝑢) = 0 .
𝑑𝑥 (2 − 𝐼𝑛 𝑢)𝑑𝑢
𝑅𝑝𝑡𝑎: ∫ =∫
𝑥 (−𝑢 + 𝐼𝑛 𝑢)
𝑦 𝑦
(𝑥 + 𝑦𝑒 𝑥 ) 𝑑𝑥 − 𝑥𝑒 𝑥 𝑑𝑦 = 0
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑢𝑥 𝑢𝑥
(𝑥 + 𝑢𝑥𝑒 ) 𝑑𝑥 − 𝑥𝑒 𝑥 (𝑢𝑑𝑥 + 𝑥𝑑𝑢) = 0
𝑥 .
𝑥 (1 + 𝑢𝑒 𝑢 − 𝑒 𝑢 𝑢)𝑑𝑥 = 𝑥 2 𝑒 𝑢 𝑑𝑢 .
𝑑𝑥 = 𝑥𝑒 𝑢 𝑑𝑢 .
𝑑𝑥
∫ 𝑥
= ∫ 𝑒 𝑢 𝑑𝑢 .
𝑢
𝐼𝑛𝑥 = 𝑒 .
𝑦
𝑅𝑝𝑡𝑎: 𝐼𝑛 𝑥 = 𝑒 𝑥
𝑑𝑦 𝑥 2−𝑦 2
𝑑𝑥
= 𝑥 2+𝑦2
(𝑥 2 + 𝑦 2 )𝑑𝑦 = (𝑥 2 − 𝑦 2 )𝑑𝑥 .
(𝑥 2 + 𝑦 2 )𝑑𝑦 − (𝑥 2 − 𝑦 2)𝑑𝑥 = 0 .
𝑦 = 𝑢𝑥 .
𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢 .
𝑥 2 𝑢𝑑𝑥 + 𝑥 3 𝑑𝑢 + 𝑢3 𝑥 2 𝑑𝑥 + 𝑢2 𝑥 3 𝑑𝑢 − 𝑥 2 𝑑𝑥 + 𝑢2 𝑥 2 𝑑𝑥 = 0 .
𝑥 2 𝑢𝑑𝑥 + 𝑢3 𝑥 2 𝑑𝑥 − 𝑥 2 𝑑𝑥 + 𝑢2 𝑥 2 𝑑𝑥 = 𝑢2 𝑥 3 𝑑𝑢 − 𝑥 3 𝑑𝑢 .
𝑦 𝑦 2 + 𝑥2
+√ = 𝐶1 𝑥
𝑥 𝑥2
𝑦 √𝑦 2 + 𝑥 2
+ = 𝐶1 𝑥
𝑥 𝑥
𝑦 + √𝑦 2 + 𝑥 2 = 𝐶1 𝑥 2
Reemplazamos 𝑦(√3) = 1:
2 2
(1) + √(1)2 + (√3) = 𝐶1 (√3)
1 + 2 = 3𝐶1
𝐶1 = 1
𝑦 + √𝑦 2 + 𝑥 2 = 𝐶1 𝑥 2
𝑦 + √𝑦 2 + 𝑥 2 = (1)𝑥 2
𝑅𝑝𝑡𝑎: 𝑥 2 = 𝑦 + √𝑦 2 + 𝑥 2
𝑦 2 𝑑𝑥 + (𝑥 2 + 3𝑥𝑦 + 4𝑦 2 )𝑑𝑦 = 0
𝑥 = 𝑣𝑦 → 𝑑𝑥 = 𝑣𝑑𝑦 + 𝑦𝑑𝑣
𝑦 2 (𝑣𝑑𝑦 + 𝑦𝑑𝑣) + ((𝑣𝑦)2 + 3𝑣𝑦𝑦 + 4𝑦 2 )𝑑𝑦 = 0
𝑦 2 (𝑣𝑑𝑦 + 𝑦𝑑𝑣) + 𝑦 2 (𝑣 2 + 3𝑣 + 4)𝑑𝑦 = 0
(𝑣 2 + 4𝑣 + 4)𝑑𝑦 = −𝑦𝑑𝑣
1 1
𝑑𝑦 = 2 𝑑𝑣
−𝑦 (𝑣 + 4𝑣 + 4)
1 1
∫ 𝑑𝑦 = ∫ 2 𝑑𝑣
−𝑦 (𝑣 + 4𝑣 + 4)
1
− ln(𝑦) + 𝐶 = − ln ( )
𝑣+2
1
)
𝑒 ln(𝑦) 𝑒 𝐶 = 𝑒 ln(𝑣+2
1
𝑅𝑝𝑡𝑎: 𝐶𝑦 =
𝑣+2
(𝑦 2 − 3𝑥 2 )𝑑𝑦 + 2𝑥𝑦𝑑𝑥 = 0
𝑥 = 𝑣𝑦 → 𝑑𝑥 = 𝑣𝑑𝑦 + 𝑦𝑑𝑣
(𝑦 − 3(𝑣𝑦)2 )𝑑𝑦 + 2𝑣𝑦𝑦(𝑣𝑑𝑦 + 𝑦𝑑𝑣) = 0
2
𝑅𝑝𝑡𝑎: 𝑥 − 𝑦 = 𝐶𝑦 2
(𝑥 4 + 𝑦 4 )𝑑𝑥 = 2𝑥 3 𝑦𝑑𝑦
𝑦 = 𝑢𝑥 → 𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢
(𝑥 3 + 𝑦 3 )𝑑𝑥 = 2𝑥𝑦 2 𝑑𝑦
𝑦 = 𝑢𝑥 → 𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢
1 2𝑢2 1 2𝑢2
𝑑𝑥 = 𝑑𝑢 → ∫ 𝑑𝑥 = ∫ 𝑑𝑢
𝑥 (1 − 𝑢3 ) 𝑥 (1 − 𝑢3 )
−2 −2 3
ln(𝑥) + 𝐶 = ln(1 − 𝑢3 ) → 𝑒 ln(𝑥) 𝑒 C = 𝑒 3 ln(1−𝑢 )
3
1 3
𝑥𝐶 = 3
→ √(1 − 𝑢3 )2 𝑥𝐶 = 1
√(1 − 𝑢3 )2
3
3
√(1 − 𝑢3 )2 𝑥𝐶 3 = 13 → (1 − 𝑢3 )2 𝑥𝐶 3 = 13
1 𝑦 3 1 𝑥3 − 𝑦 3 1
(1 − 𝑢3 )𝐶 = √ → (1 − ( ) ) 𝐶 = √ →( )𝐶 = √
𝑥 𝑥 𝑥 𝑥3 𝑥
1
𝑅𝑝𝑡𝑎: (1 − 𝑦 3 )𝐶 = √
𝑥
2.5 Ecuaciones Diferenciales Reducibles Homogéneas
Ejercicio 1:
ⅆ𝑦 𝑥 + 𝑦 + 4
=
ⅆ𝑥 𝑥 − 𝑦 − 6
SOLUCION:
ⅆy x + y + 4
= => (x − y − 6)ⅆy − (x + y + 4)ⅆx = 0
ⅆx x − y − 6
Si resolvemos: x − y − 6 = 0 ; x + y + 4 = 0 => x = 1 ; y = −5
Sustituyendo:
(u + 1 − v + 5 − 6)ⅆx − (u + 1 + v − 5 + 4)ⅆy = 0 => (u − v)ⅆu − (u + v)ⅆv = 0
Ahora: v = tu => ⅆv = tⅆu + uⅆt
(u + tu)ⅆu − (u + tu)(tⅆu + uⅆt) = 0 => (1 − t)ⅆu − (1 + t)(tⅆu + uⅆt) = 0
=> (1 − t)ⅆu − (t + t 1 )ⅆu − (1 + t)uⅆt = 0 => (t 2 + 2t − 1)ⅆu − (1 + t)uⅆt = 0
ⅆu ⅆt tⅆt
7∫ − 3∫ 2 +7∫ 2 =0
u t −1 t −1
3 𝑡−1 7 𝑢14 (𝑡 2 − 1)7 (𝑡 + 1)3
7𝐿𝑛(𝑢) − 𝐿𝑛 ( ) + 𝐿𝑛(𝑡 2 − 1) = 𝐿𝑛(𝐶 ) => 𝐿𝑛 = 𝐿𝑛(𝐶)
2 𝑡+1 2 (𝑡 − 1)3
y
Pero: t = => u14 (t − 1)4 (t + 1)10 = C => u7 (t − 1)2 (t + 1)3 = C
u
Ejercicio 3:
ⅆy x + y + 1
=
ⅆx x − y − 1
SOLUCION:
ⅆy x + y + 1
= => (𝑥 − 𝑦 + 1)ⅆ𝑦 − (𝑥 + 𝑦 − 1)ⅆ𝑥 = 0
ⅆx x − y − 1
Si resolvemos: 𝑥 − 𝑦 + 1 = 0 ; 𝑥 + 𝑦 − 1 = 0 => 𝑥 = 0 ; 𝑦 = 1
Entonces 𝑣 = 𝑦 − 1 => ⅆ𝑣 = ⅆ𝑦
Sustituyendo:
(𝑥 − 𝑣 − 1 + 1)ⅆ𝑣 − (𝑥 + 𝑣 + 1 − 1)ⅆ𝑥 = 0 => (𝑥 − 𝑣)ⅆ𝑣 − (𝑥 + 𝑣)ⅆ𝑥 = 0
Ahora 𝑣 = 𝑡𝑥 => ⅆ𝑣 = 𝑡ⅆ𝑥 + 𝑥ⅆ𝑡
(𝑥 − 𝑡𝑥)(𝑡ⅆ𝑥 + 𝑥ⅆ𝑡) − (𝑥 + 𝑡𝑥)ⅆ𝑥 = 0 => (1 − 𝑡)(𝑡ⅆ𝑥 + 𝑥ⅆ𝑡) − (1 + 𝑡)ⅆ𝑥 = 0
(𝑡 − 𝑡 2 )ⅆ𝑥 + (1 − 𝑡)𝑥ⅆ𝑡 − (1 + 𝑡)ⅆ𝑥 = 0
(𝑡 − 𝑡 2 )ⅆ𝑥 + (1 − 𝑡)𝑥ⅆ𝑡 − (1 + 𝑡)ⅆ𝑥 = 0 => (𝑡 2 + 1)ⅆ𝑥 − (𝑡 − 1)𝑥ⅆ𝑡 = 0
ⅆ𝑥 𝑡ⅆ𝑡 ⅆ𝑡 1
∫ +∫ 2 −∫ 2 = 0 => 𝐿𝑛 (𝑥) + 𝐿𝑛(𝑡 2 + 1) − 𝐴𝑟𝑐𝑡𝑔(𝑡) = 𝐶
𝑥 𝑡 +1 𝑡 +1 2
𝑣 𝑣 𝑦2
Pero: 𝑡 = 𝑥 => 𝐴𝑟𝑐𝑡𝑔 (𝑥 ) = 𝐿𝑛 (𝑥 √𝑥 2 + 1) + 𝐶
𝑦−1
𝑅𝑝𝑡𝑎: 𝑣 = 𝑦 − 1 => 𝐴𝑟𝑐𝑜𝑡𝑔 ( ) = 𝐿𝑛√(𝑦 − 1)2 + 𝑥 2 + 𝐶
𝑥
Ejercicio 5:
3𝑥 + 𝑦 − 2 + 𝑦(𝑥 − 1) = 0
SOLUCION:
(3𝑥 + 𝑦 − 2)ⅆ𝑥 + (𝑥 − 1)ⅆ𝑦 = 0
Resolviendo el sistema de ecuaciones
3𝑥 + 𝑦 − 2 = 0 ; 𝑥 − 1 = 0 => 𝑥 = 1 ; 𝑦 = −1
Sustituyendo: (3𝑢 + 3 + 𝑣 − 1 − 2)ⅆ𝑢 + 𝑢ⅆ𝑣 = 0 => (3𝑢 + 𝑣)ⅆ𝑢 + 𝑢ⅆ𝑣 = 0
Ahora: 𝑣 = 𝑡𝑢 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(3𝑢 + 𝑡𝑢)ⅆ𝑢 + 𝑢(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0 => (3 + 𝑡)ⅆ𝑢 + 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡 = 0
ⅆ𝑢 ⅆ𝑡 1
(3 + 2𝑡)ⅆ𝑢 + 𝑢ⅆ𝑡 = 0 => ∫ +∫ = 0 => 𝐿𝑛 (𝑢) + 𝐿𝑛(2𝑡 + 3) = 𝐿𝑛(𝐶)
𝑢 2𝑡 + 3 2
𝑣 2𝑣
𝐿𝑛[𝑢2 (2𝑡 + 3)] = 𝐿𝑛 (𝐶 ) ; 𝑃𝑒𝑟𝑜 = 𝑡 = => 𝑢2 (2𝑡 + 3) = 𝐶 => 𝑢2 ( + 3) = 𝐶
𝑢 𝑢
𝑅𝑝𝑡𝑎: 𝑢(2𝑣 + 3𝑢) = 𝐶 => 𝑣 = 𝑦 + 1 ; 𝑢 = 𝑥 − 1 => (𝑥 − 1)(3𝑥 + 2𝑦 − 1) = 𝐶
Ejercicio 7:
(−4𝑥 + 3𝑦 − 7)ⅆ𝑥 − (𝑥 + 1)ⅆ𝑦 = 0
SOLUCION:
(−4𝑥 + 3𝑦 − 7)ⅆ𝑥 − (𝑥 + 1)ⅆ𝑦 = 0 => −4𝑥 + 3𝑦 − 7 = 0 => 𝑥 = 1
11
−4 + 3𝑦 − 7 = 0 => 𝑦 =
3
11
De donde: 𝑣 = 𝑦 − 3
=> ⅆ𝑣 = ⅆ𝑦 ; 𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥
En la ecuación diferencial:
11
[−4(𝑢 + 1) + 3 (𝑣 + ) − 7] ⅆ𝑢 − 𝑢ⅆ𝑣 = 0
3
(3𝑣 − 4𝑢)ⅆ𝑢 − 𝑢ⅆ𝑣 = 0 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑎: 𝑣 = 𝑡𝑢 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
ⅆ𝑢 ⅆ𝑡 ⅆ𝑢 ⅆ𝑡
2 − = 0 => 2 ∫ −∫ = 0 => 2𝐿𝑛 (𝑢) − 𝐿𝑛 (𝑡 − 2) = 𝐿𝑛(𝐶)
𝑢 𝑡−2 𝑢 𝑡−2
𝑢2 𝑢2 𝑣
𝐿𝑛 ( ) = 𝐿𝑛 (𝐶 ) => = 𝐶 => 𝑢2 = 𝐶 (𝑡 − 2) => 𝑢2 = 𝐶 ( − 2)
𝑡−2 𝑡−2 𝑢
11
𝑦−
𝑅𝑝𝑡𝑎: (𝑥 − 1 )2 = 𝐶( 3 − 2) => (𝑥 − 1)3 = 𝐶(3𝑦 − 6𝑥 − 8)
𝑥−1
Ejercicio 9:
(6𝑥 + 4𝑦 − 8)ⅆ𝑥 + (𝑥 + 𝑦 − 1)ⅆ𝑦 = 0
SOLUCION:
Al resolver 𝑢 = 𝑥 − 2 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 + 1 => ⅆ𝑣 = ⅆ𝑦
Entonces, al sustituir
(6𝑢 + 12 + 4𝑣 − 4 − 8)ⅆ𝑢 + (𝑢 + 2 + 𝑣 − 1 − 1)ⅆ𝑣 = 0 =>
(6𝑢 + 4𝑣)ⅆ𝑢 + (𝑢 + 𝑣)ⅆ𝑣 = 0
Ahora: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(6𝑢 + 4𝑢𝑡)ⅆ𝑢 + (𝑢 + 𝑢𝑡) + (𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
5 3
ⅆ𝑢 (𝑡 + 1)ⅆ𝑡 (𝑡 + − ) ⅆ𝑡
∫ +∫ = 0 => 𝐿𝑛(𝑢) + ∫ 2 2
2
𝑢 5 25 5 2 1
(𝑡 + ) − + 6 (𝑡 + ) −
2 4 2 4
5 1
1 3 𝑡+2−2
2
𝐿𝑛(𝑢) + 𝐿𝑛 (𝑡 + 5𝑡 + 6) − 𝐿𝑛 ( ) = 𝐿𝑛(𝐶)
2 1 5 1
2(2) (2) 𝑡+ +
2 2
𝑡+2 3 𝑡+3 3
𝐿𝑛[𝑢2 (𝑡 2 + 5𝑡 + 6)] − 𝐿𝑛 ( ) = 𝐿𝑛 (𝐶 ) => 𝑢2 (𝑡 + 3)(𝑡 + 2) ( ) =𝐶
𝑡−3 𝑡+2
𝑢2 (𝑡 + 3)4 = 𝐶(𝑡 + 2)2 => 𝑢(𝑡 + 3)2 = 𝐶(𝑡 + 2)
𝑣 𝑣 2 𝑣
Pero: 𝑡 = => 𝑢 ( + 3) = 𝐶 ( + 2) => (3 + 3𝑢2 ) = 𝐶(𝑣 + 2𝑢)
𝑢 𝑢 𝑢
Ejercicio 11:
(3𝑦 − 7𝑥 + 7)ⅆ𝑥 − (3𝑥 − 7𝑦 − 3)ⅆ𝑦 = 0
SOLUCION:
Al resolver 3𝑦 − 7𝑥 + 7 = 0 ; 7𝑦 − 3𝑥 + 3 = 0 => 𝑦 = 0 ; 𝑥 = 1
𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥
Al sustituir:
(3𝑦 − 7𝑢 − 7 + 7)ⅆ𝑥 − (3𝑢 + 3 − 7𝑦 − 3)ⅆ𝑦 = 0 ; (3𝑦 − 7𝑢)ⅆ𝑥 − (3𝑢 − 7𝑦)ⅆ𝑦 = 0
Ahora hacemos: 𝑦 = 𝑡𝑢 => ⅆ𝑦 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(3𝑡𝑢 − 7𝑢)ⅆ𝑢 − (3𝑢 − 7𝑡𝑢)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(3𝑡 − 7)ⅆ𝑢 − (3 − 7𝑡)𝑡ⅆ𝑢 − (3 − 7𝑡)𝑢ⅆ𝑡 = 0
7(𝑡1 − 1)ⅆ𝑢 − (3 − 7𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 ⅆ𝑡 𝑡ⅆ𝑡
7∫ −3∫ 2 +7∫ 2 =0
𝑢 𝑡 −1 𝑡 −1
3 𝑡−1 7
7𝐿𝑛(𝑢) − 𝐿𝑛 ( ) + 𝐿𝑛(𝑡 2 − 1) = 𝐿𝑛(𝐶)
2 𝑡+1 2
𝑢34 (𝑡 2 − 1)2 (𝑡 + 1)3 𝑦
𝐿𝑛 = 𝐿𝑛(𝐶 ) 𝑃𝑒𝑟𝑜: 𝑡 = => 𝑢14 (𝑡 − 1)4 (𝑡 + 1)10 = 𝐶
(𝑡 − 1)3 𝑢
𝑢2 (𝑡 − 1)2 (𝑡 + 1)4 = 𝐶 (𝑦 − 𝑢)2 (𝑦 + 𝑢)5 = 𝐶 => 𝑅𝑝𝑡𝑎: (𝑦 − 𝑥 + 1)2 (𝑦 + 𝑥 − 1)5 = 𝐶
Ejercicio 13:
(𝑥 − 𝑦 + 3)ⅆ𝑥 + (3𝑥 + 𝑦 + 1)ⅆ𝑦 = 0
SOLUCION:
Al resolver: 𝑥 − 𝑦 + 3 = 0 => 3𝑥 + 𝑦 + 1 = 0 => 𝑥 = −1 ; 𝑦 = 2
𝑢 = 𝑥 + 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − 2 => ⅆ𝑣 = ⅆ𝑦
Sustituyendo:
(𝑢 − 1 − 𝑣 − 2 + 3)ⅆ𝑢 + (3𝑖 − 3 + 𝑣 + 2 + 1)ⅆ𝑣 = 0
(𝑢 − 𝑣)ⅆ𝑢 + (3𝑢 + 𝑣)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
Ahora: 𝑣 = 𝑡𝑢 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(1 − 𝑡)ⅆ𝑢 + (3 + 𝑡)𝑡ⅆ𝑢 + (3 + 𝑡) + 𝑢ⅆ𝑡 = 0 => (𝑡 2 + 2𝑡 + 1)ⅆ𝑢 + (3 + 𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (𝑡 + 3)ⅆ𝑡 (𝑡 + 1 + 2)ⅆ𝑡
∫ +∫ = 0 => 𝐿𝑛 (𝑢 ) + ∫
𝑢 (𝑡 + 1)1 (𝑡 + 1)2
1 𝑢 (𝑡 + 1) 1
𝐿𝑛(𝑢) + 𝐿𝑛 (𝑡 + 1) − 𝐿𝑛(𝑐) = => 𝐿𝑛 =
𝑡+1 𝐶 𝑡+1
𝑣
Pero: 𝑡 = 𝑢 => 𝑢 (𝑡 + 1) = 𝐶𝑒 𝑣(𝑥+1) => 𝑢 = 𝑥 + 1
2𝑥+2
𝑣 = 𝑦 − 2 => 𝑅𝑝𝑡𝑎: 𝑥 + 𝑦 − 1 = 𝐶𝑒 𝑥+𝑦−1
Ejercicio 15:
ⅆ𝑦 4𝑥 + 3𝑦 + 15
=−
ⅆ𝑥 2𝑥 + 𝑦 + 7
SOLUCION:
Al resolver 4𝑥 + 3𝑦 = −15 ; 3𝑥 + 𝑦 = −7 => 𝑥 = −3 ; 𝑦 = −1
𝑢 = 𝑥 + 3 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 + 1 => ⅆ𝑣 = ⅆ𝑦
Al sustituir:
(2𝑢 − 6 + 𝑣 − 1 + 7)ⅆ𝑢 + (4𝑢 − 12 + 3𝑣 − 3 + 15)ⅆ𝑣 = 0
(2𝑢 + 𝑣)ⅆ𝑢 + (4𝑢 + 3𝑣)ⅆ𝑣 = 0 ; 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(2𝑢 + 𝑢𝑡)ⅆ𝑢 + (4𝑢 + 3𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0 => (3𝑡1 + 5𝑡 + 2)ⅆ𝑢 + (4 + 3𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (4𝑡 + 3)ⅆ𝑡 ⅆ𝑡 ⅆ𝑡
∫ +∫ = 0 => 𝐿𝑛(𝑢) + 6 ∫ −∫ =0
𝑢 (3𝑡 + 2)(𝑡 + 1) 3𝑡 + 2 𝑡+1
𝑢(3𝑡 + 2)2
𝐿𝑛(𝑢) + 2𝐿𝑛 (3𝑡 + 2) − 𝐿𝑛 (𝑡 + 1) = 𝐿𝑛(𝐶 ) => 𝐿𝑛 [ ] = 𝐿𝑛(𝐶)
𝑡+1
𝑢 𝑢(3𝑡+2)2
Pero 𝑡 = 𝑣 => 𝐿𝑛 [ ] = 𝐿𝑛(𝐶 ) => (3𝑣 + 2𝑢)2 = 𝐶(𝑣 + 𝑢)
𝑡+1
Ejercicio 17:
(𝑥 + 4𝑦 − 3)ⅆ𝑥 − (𝑥 − 6𝑦 − 5 = ⅆ𝑦 = 0
SOLUCION:
Al resolver 𝑥 − 4𝑦 − 3 = 0 ; 𝑥 − 6𝑦 − 5 = 0 => 𝑥 = −1 ; 𝑦 = −1
𝑢 = 𝑥 + 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 + 1 => ⅆ𝑣 = ⅆ𝑦
Al sustituir:
(𝑢 − 1 − 4𝑣 + 4 − 3)ⅆ𝑢 − (𝑢 − 1 − 6𝑣 + 6 − 5)ⅆ𝑣 = 0
(𝑢 − 4𝑣ⅆ𝑢) − (𝑢 − 6𝑣)ⅆ𝑣 = 0 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(𝑢 − 4𝑢𝑡)ⅆ𝑢 − (𝑢 − 6𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(1 − 4𝑡)ⅆ𝑢 − (1 − 6𝑡)𝑡ⅆ𝑢 − (1 − 6𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (6𝑡 − 1)ⅆ𝑡 ⅆ𝑡 ⅆ𝑡
∫ +∫ = 0 => 𝐿𝑛 (𝑢) + 4 ∫ −3∫ =0
𝑢 (2𝑡 − 1)(3𝑡 − 1) 2𝑡 − 1 3𝑡 − 1
𝑢(2𝑡 − 1)1
𝐿𝑛(𝑢) + 2𝐿𝑛 (2𝑡 − 1) − 𝐿𝑛(3𝑡 − 1) = 𝐿𝑛 (𝐶 ) => 𝐿𝑛 [ ] = 𝐿𝑛(𝑐)
3𝑡 − 1
𝑣 2𝑣 2 3𝑣
Pero 𝑡 = => 𝑢(2𝑡 − 1)1 = 𝐶 (3𝑡 − 1) => 𝑢 ( − 1) = 𝐶 ( − 1)
𝑢 𝑢 𝑢
Ejercicio 19:
(𝑥 + 2𝑦 − 1)ⅆ𝑥 − (2𝑥 + 𝑦 − 5)ⅆ𝑥 = 0
SOLUCION:
Resolviendo 𝑥 + 2𝑦 − 1 = 0 ; 2𝑥 + 𝑦 − 5 = 0 => 𝑦=1 ; 𝑥=1
Tenemos: 𝑢 = 𝑥 − 3 ; ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 + 1 => ⅆ𝑦 = ⅆ𝑣
Sustituyendo: (𝑢 + 3 + 2𝑣 − 1 − 3)ⅆ𝑢 − (2𝑢 − 6 + 𝑣 + 1 − 5)ⅆ𝑣 = 0
=> (𝑢 + 2𝑣)ⅆ𝑢 − (2𝑢 + 𝑣)ⅆ𝑣 = 0
Ahora 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(𝑢 + 2𝑡)ⅆ𝑢 − (2𝑢 + 𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0 => (1 − 𝑡 2 )ⅆ𝑢 − (2 + 𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (𝑡 + 2)ⅆ𝑢 1 𝑡−1
∫ +∫ 1 = 0 => 𝐿𝑛 (𝑢) + 𝐿𝑛(𝑡1 − 1) + 𝐿𝑛 ( ) = 𝐿𝑛(𝐶)
𝑢 𝑡 −1 2 𝑡+1
𝑣 𝑣 3 𝑣
Pero: 𝑡 = 𝑢 => 𝑢2 (𝑡 − 1)3 = 𝐶 (𝑡 + 1) => 𝑢2 (𝑢 − 1) = 𝐶 (𝑢 + 1)
Ejercicio 21:
(2𝑥 − 3𝑦 + 4)ⅆ𝑥 + 3(𝑥 − 1)ⅆ𝑦 ; 𝑦(3) = 2
SOLUCION:
Al resolver 𝑥 − 1 = 0 ; 2𝑥 − 3𝑦 + 4 = 0 => 𝑥 = 1 ; 𝑦 = 2
𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − 2 => ⅆ𝑣 = ⅆ𝑦
Sustituyendo:
(2𝑢 − 2 − 3𝑣 − 6 + 4)ⅆ𝑢 + 3(𝑢 − 1)ⅆ𝑣 = 0 => (2𝑢 − 3𝑣)ⅆ𝑢 − 3𝑢ⅆ𝑣 = 0
Entonces => 𝑣 = 𝑢𝑡 ; ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(2𝑢 − 3𝑢𝑡)ⅆ𝑢 + 3𝑢 (𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(2 − 3𝑡)ⅆ𝑢 + 3ⅆ𝑡𝑢 + 3𝑢ⅆ𝑡 = 0 => 3ⅆ𝑢 + 3𝑢ⅆ𝑡 = 0
ⅆ𝑢 𝑣
2∫ + 3 ∫ ⅆ𝑡 = 0 => 2𝑢𝐿𝑛 (𝑢) + 3𝑡 = 𝐶 𝑃𝑒𝑟𝑜: 𝑡 =
𝑢 𝑢
3𝑣
2𝐿𝑛 (𝑢) + = 𝐶 => 2𝑢𝐿𝑛 (𝑢) + 3𝑣 = 𝐶𝑢 => 𝑢 = 𝑥 − 1 ; 𝑣 = 𝑦 − 2
𝑢
=> 2(𝑥 − 1)𝐿𝑛(𝑥 − 1) + 3(𝑦 − 2) = 𝐶 (𝑥 − 1) 𝑆𝑖 𝑥 = 3 ; 𝑦 = 2
2(2)𝐿𝑛(2) + 3(0) = 2𝐶 => 𝐶 = 2𝐿𝑛(2)
2(𝑥 − 1)𝐿𝑛 (𝑥 − 1) + 3(𝑦 − 2) = 2(𝑥 − 1)𝐿𝑛(2)
𝑥−1
𝑅𝑝𝑡𝑎: 3(𝑦 − 2) = −2(𝑥 − 1)𝐿𝑛 ( )
2
Ejercicio 23:
ⅆ𝑦 2𝑥 + 3𝑦 + 1
=
ⅆ𝑥 𝑥 − 2𝑦 + 1
SOLUCION:
(𝑥 − 2𝑦 + 1)ⅆ𝑦 − (2𝑥 + 3𝑦 + 1)ⅆ𝑥 = 0
5 1
2𝑥 + 3𝑦 = −1 ; 𝑥 − 2𝑦 = −1 => 𝑥 = − ; 𝑦=
7 7
5 1
Entonces 𝑢 = 𝑥 + => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − => ⅆ𝑦 = ⅆ𝑣
7 7
5 2 10 3
Al sustituir (𝑢 − − 2𝑣 − + 1) ⅆ𝑣 − (2𝑢 − + 3𝑣 + + 1) ⅆ𝑢 = 0
7 7 7 7
2 2𝑣 + 𝑢 5 1
𝑅𝑝𝑡𝑎: 𝐿𝑛[𝑣 2 + 𝑢𝑣 + 𝑢2 ] − 𝐴𝑟𝑐𝑜𝑡𝑔 ( ) = 𝐶 ⅆ𝑜𝑛ⅆ𝑒 𝑢 = 𝑥 + ; 𝑣=𝑦−
√3 √3𝑢 7 7
Ejercicio 25:
(𝑥 − 2𝑦 + 3)ⅆ𝑦 + (2𝑥 + 𝑦 − 1)ⅆ𝑥 = 0
1 7
Al resolver 𝑥 − 2𝑦 + 3 = 0 ; 2𝑥 + 𝑦 − 1 = 0 => 𝑥 = − ; 𝑦=
5 5
1 7
𝑢=𝑥+ => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − => ⅆ𝑦 = ⅆ𝑣
5 5
Entonces, al sustituir:
1 14 2 7
(𝑢 − − 2𝑣 − + 3) ⅆ𝑢 + (2𝑢 − + 𝑣 + − 1) ⅆ𝑣 = 0
5 5 5 5
(𝑢 − 2𝑣)ⅆ𝑢 + (2𝑢 + 𝑣)ⅆ𝑣 = 0 ; 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(𝑢 − 2𝑢𝑡)ⅆ𝑢 + (2𝑢 + 𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
=> (1 − 2𝑡)ⅆ𝑢 + (2 + 𝑡)𝑡ⅆ𝑢 + (2 + 𝑡)𝑢ⅆ𝑡 = 0 => (𝑡 2 + 1)ⅆ𝑢 + (𝑡 + 2)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (𝑡 + 2)ⅆ𝑡 1
∫ +∫ 2 = 0 => 𝐿𝑛 (𝑢) + 𝐿𝑛(𝑡 2 − 1) = 𝐶
𝑢 𝑡 −1 2
𝑢2 (𝑡 2 − 1)(𝑡 − 1) 𝑣 𝑣 2
𝐿𝑛 [ ] = 𝐿𝑛(𝐶 ) ; 𝑃𝑒𝑟𝑜: 𝑡 = => 𝑢2 (𝑡 2 − 1) = 𝐶 ; ( − 1) = 𝐶
𝑡+1 𝑢 𝑢
=> 𝑣 2 − 2𝑢𝑣 + 𝑢2 = 𝐶 => 𝑢 = 𝑥 + 1 ; 𝑣 = 𝑦 + 1
(𝑦 + 1)2 − 2(𝑥 + 1)(𝑦 + 1) + (𝑥 + 1)2 = 𝐶 => 𝑅𝑝𝑡𝑎: 𝑥 2 + 𝑥𝑦 − 𝑦 2 − 𝑥 + 3𝑦 = 𝐶
Ejercicio 27:
Al resolver 4𝑥 + 3𝑦 − 7 = 0 ; 3𝑥 − 7𝑦 + 4 = 0
28𝑥 + 21𝑦 − 49 = 0 => 9𝑥 − 21𝑦 + 12
Al sumar ambas ecuaciones: 37𝑥 − 37 = 0 => 𝑥 = 1 ; 𝑦 = 1
Hacemos: 𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − 1 => ⅆ𝑦 = ⅆ𝑣
Sustituyendo:
(4𝑢 + 4 + 3𝑣 + 3 − 7)ⅆ𝑢 + (3𝑢 + 3 − 7𝑣 − 7 + 4)ⅆ𝑣 = 0
(4𝑢 + 3𝑣)ⅆ𝑢 + (3𝑢 − 7𝑣)ⅆ𝑣 = 0 ; 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(4𝑢 + 3𝑢𝑡)ⅆ𝑢 + (3𝑢 − 7𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0 ; (4 + 3𝑡)ⅆ𝑢 + (3 − 7𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(4 + 3𝑡)ⅆ𝑢 + (3 − 7𝑡)𝑡ⅆ𝑢 + (3 − 7𝑡)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (3 − 7𝑦)ⅆ𝑡
(4 + 6𝑡 − 7𝑡 2 )ⅆ𝑢 + (3 − 7𝑡)𝑢ⅆ𝑡 = 0 => + =0
𝑢 4 + 6𝑡 − 7𝑡 2
ⅆ𝑢 1 (6 − 7𝑡)ⅆ𝑡 1
∫ + ∫ 2
= 0 => 𝐿𝑛(𝑢) + 𝐿𝑛 (4 + 6𝑡 − 7𝑡 2 ) = 𝐿𝑛(𝐶 )
𝑢 2 4 + 6𝑡 + 7𝑡 2
𝐿𝑛(𝑢2 ) + 𝐿𝑛(4 + 6𝑡 + 7𝑡 2 ) = 𝐿𝑛 (𝐶 ) => 𝐿𝑛[𝑢2 (4 + 6𝑡 − 7𝑡 2 )] = 𝐿𝑛(𝐶 )
𝑣
Pero: 𝑡 = => 4𝑢2 + 6𝑢𝑣 − 7𝑣 2 = 𝐶 ; 𝑢 = 𝑥 − 1 ; 𝑣 = 𝑦 − 1
𝑢
Ejercicio 29:
(5𝑥 + 2𝑦 + 1)ⅆ𝑥 + (2𝑥 + 𝑦 + 1)ⅆ𝑦 = 0
SOLUCION:
Al resolver 5𝑥 + 2𝑦 + 1 = 0 ; 2𝑥 + 𝑦 + 1 = 0 => 𝑥 = −1 ; 𝑦 = 2
Entonces: 𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 + 3 => ⅆ𝑦 = ⅆ𝑣
Al sustituir:
(5𝑢 + 5 + 2𝑣 − 6 + 1)ⅆ𝑢 + (2𝑢 + 2 + 𝑣 − 3 + 1)ⅆ𝑣 = 0
(5𝑢 + 2𝑣)ⅆ𝑢 + (2𝑢 + 𝑣)ⅆ𝑣 = 0 => 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 ; ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(5𝑢 + 2𝑢ⅆ𝑡)ⅆ𝑢 + (2𝑢 + 𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(5 + 2𝑡)ⅆ𝑢 + (2 + 𝑡)𝑡ⅆ𝑢 + (2 + 𝑡)𝑢ⅆ𝑡 = 0 => (𝑡 2 + 4𝑡 + 5)ⅆ𝑢 + (𝑡 + 2)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (𝑡 + 2)ⅆ𝑡 1 2(𝑡 + 2)ⅆ𝑡
∫ +∫ 2 = 0 => 𝐿𝑛 (𝑢) + ∫ 2 =0
𝑢 𝑡 + 4𝑡 + 5 2 𝑡 + 4𝑡 + 5
2𝐿𝑛 (𝑢) + 𝐿𝑛(𝑡 2 + 4𝑡 + 5) = 𝐿𝑛(𝐶 ) => 𝐿𝑛[𝑢2 (𝑡 2 + 4𝑡 + 5)] = 𝐿𝑛(𝐶)
𝑣 𝑣1 𝑣
Pero: 𝑡 = 𝑢 => 𝑢2 (𝑢2 + 4 𝑢 + 5) = 𝐶 => 𝑣 2 + 4𝑢𝑣 + 5𝑢2 = 𝐶
Ejercicio 31:
(2𝑥 − 𝑦 − 1)ⅆ𝑥 + (3𝑥 + 2𝑦 − 5)ⅆ𝑦 = 0
SOLUCION:
Al resolver 𝑥 − 2𝑦 − 1 = 0 ; 2𝑥 + 𝑦 − 1 => 𝑥 = 1 ; 𝑦 = −1
𝑢 = 𝑥 − 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − 1 => ⅆ𝑦 = ⅆ𝑣
Sustituyendo:
(2𝑢 + 2 − 𝑣 − 1 − 1)ⅆ𝑢 + (3𝑢 + 3 + 2𝑣 + 2 − 5)ⅆ𝑣 = 0
(2𝑢 − 𝑣)ⅆ𝑢 + (3𝑢 + 2𝑣)ⅆ𝑣 = 0 ; 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑢𝑡 => ⅆ𝑣 = 𝑡𝑢ⅆ + 𝑢ⅆ𝑡
(2𝑢 − 𝑢𝑡)ⅆ𝑢 + (3𝑢 + 2𝑢𝑡)(𝑡ⅆ𝑢 + 𝑢ⅆ𝑡) = 0
(2𝑢 − 𝑢𝑡)ⅆ𝑢 + (3𝑢 + 2𝑢𝑡)𝑡ⅆ𝑢 + (3𝑢 + 2𝑢𝑡)𝑢ⅆ𝑡 = 0
2(𝑡 2 + 𝑡 + 1)ⅆ𝑢 + (2𝑡 + 3)𝑢ⅆ𝑡 = 0
ⅆ𝑢 (2𝑡 + 3)ⅆ𝑡 (2𝑡 + 1)ⅆ𝑡 ⅆ𝑡
2∫ +∫ 2 = 0 => 2𝐿𝑛(𝑢) + ∫ 2 +2∫ =0
𝑢 𝑡 +𝑡+1 𝑡 +𝑡+1 1 2 1
(𝑡 − ) − + 1
2 4
ⅆ𝑡
2𝐿𝑛 (𝑢) + 𝐿𝑛(𝑡 2 + 𝑡 + 1) + 2 ∫ =𝐶
1 2 3
(𝑡 − ) +
2 4
1
2 𝑡+2
2 2
𝐿𝑛[𝑢 (𝑡 + 𝑡 + 1)] + 𝐴𝑟𝑐𝑡𝑔 ( )=𝐶
√3 √3
2
4 2𝑡 + 1 𝑣
𝐿𝑛(𝑢2 𝑡 2 + 𝑢2 𝑡 + 𝑢2 ) + 𝐴𝑟𝑐𝑡𝑔 ( ) = 𝐶 ; 𝑃𝑒𝑟𝑜: 𝑡 =
√3 √3 𝑢
1 2 2𝑣 + 𝑢
𝐿𝑛(𝑣 2 + 𝑢𝑣 + 𝑢2 ) + 𝐴𝑟𝑐𝑡𝑔 ( )= 𝐶 ; 𝑢 = 𝑥−1 ; 𝑣 = 𝑦+1
2 √3 √3𝑢
2 2(𝑦 − 1) + 𝑥 − 1
𝐿𝑛√(𝑥 − 1)2 + (𝑥 − 1)(𝑦 − 1) + (𝑦 − 1)2 + 𝐴𝑟𝑐𝑡𝑔 ( )
√3 3(𝑥 − 1)
2 2𝑦 + 𝑥 − 3
=> 𝑅𝑝𝑡𝑎: 𝐿𝑛√𝑥 2 + 𝑦 2 − 3𝑥 − 3𝑦 + 𝑥𝑦 + 𝐴𝑟𝑐𝑡𝑔 ( )=𝐶
√3 √3(𝑥 − 1)
Ejercicio 33:
(9𝑥 + 7𝑦 − 5)ⅆ𝑥 + (5𝑥 + 4𝑦 − 3)ⅆ𝑦 = 0
SOLUCION:
Si resolvemos 𝑥 − 2𝑦 − 3 = 0 ; 2𝑥 + 𝑦 − 1 = 0 => 𝑥 = −1 ; 𝑦 = 2
𝑢 = 𝑥 + 1 => ⅆ𝑢 = ⅆ𝑥 ; 𝑣 = 𝑦 − 2 => ⅆ𝑣 = ⅆ𝑦
Reemplazamos:
[9(𝑢 − 1) + 7(𝑣 − 2) − 5]ⅆ𝑢 + [5(𝑢 − 1) + 4(𝑦 + 2) − 3]ⅆ𝑣 = 0
(9𝑢 + 7𝑣)ⅆ𝑢 + (5𝑢 + 4𝑣)ⅆ𝑣 = 0 ; 𝐴ℎ𝑜𝑟𝑎: 𝑣 = 𝑡𝑢 => ⅆ𝑣 = 𝑡ⅆ𝑢 + 𝑢ⅆ𝑡
(9𝑢 + 7𝑡𝑢)ⅆ𝑢 + (5𝑢 + 4𝑡𝑢)(𝑢ⅆ𝑡 + 𝑡ⅆ𝑢) = 0
Simplificamos “u”: (9 + 7𝑡)ⅆ𝑢 + (5 + 4𝑡)(𝑢ⅆ𝑡 + 𝑡ⅆ𝑢) = 0
(9 + 7𝑡)ⅆ𝑢 + (5 + 4𝑡)𝑢ⅆ𝑡 + (5 + 4𝑡)𝑡ⅆ𝑢 = 0
=> 𝑅𝑝𝑡𝑎: (9 + 12𝑡 + 4𝑡 2 )ⅆ𝑢 + (5 + 4𝑡)𝑢ⅆ𝑡 = 0
Ejercicio 1:
𝑦 3 ⅆ𝑥 + 2(𝑥 2 − 𝑥𝑦 2 )ⅆ𝑦 = 0
𝑦 = 𝑧𝛼 → ⅆ𝑦 = 𝑎𝑧 𝛼−1 ⅆ𝑧
𝑧 3𝛼 ⅆ𝑥 + 2(𝑥 2 − 𝑥𝑧 2𝛼 )(𝑎𝑧 𝛼−1 ⅆ𝑧) = 0
𝑧 3𝛼 ⅆ𝑥 + (2𝑎𝑧 𝛼−1 𝑥 2 − 2𝑎𝑥𝑧 3𝛼−1 )ⅆ𝑧 = 0
1
3𝑎 = 𝑎 − 1 + 2 → 𝑎=
2
1
𝑎 + 1 = 3𝑎 → 𝑎=
2
Reemplazamos:
3 1 1 1
𝑧 2 ⅆ𝑥 + (𝑧 −2 𝑥 2 − 𝑥𝑧 2 ) ⅆ𝑧 = 0 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑚𝑜𝑠 𝑎 𝑎𝑚𝑏𝑜𝑠 𝑝𝑜𝑟: 𝑧 2
𝑧 2 ⅆ𝑥 + (𝑥 2 − 𝑥𝑧)ⅆ𝑧 = 0
𝑥 = 𝑣𝑧 → ⅆ𝑥 = 𝑣ⅆ𝑧 + 𝑧ⅆ𝑣
𝑧 2 (𝑣ⅆ𝑧 + 𝑧ⅆ𝑣) + ((𝑣𝑧)2 − 𝑣𝑧𝑧)ⅆ𝑧 = 0
𝑣𝑧 2 ⅆ𝑧 + 𝑧 3 ⅆ𝑣 + 𝑣 2 𝑧 2 ⅆ𝑧 − 𝑣𝑧 2 ⅆ𝑧 = 0
𝑧 3 ⅆ𝑣 + 𝑣 2 𝑧 2 ⅆ𝑧 = 0
𝑧 3 ⅆ𝑣 = −𝑣 2 𝑧 2 ⅆ𝑧
−1 1 −1 1
2
ⅆ𝑣 = ⅆ𝑧 → ∫ 2 ⅆ𝑣 = ∫ ⅆ𝑧
𝑣 𝑧 𝑣 𝑧
1 1 1
+ 𝐶 = ln(𝑧) → 𝑥 + 𝐶 = ln(𝑧) 𝑦 = 𝑧2 𝑧 = 𝑦2
𝑣
𝑧
𝑧 𝑦2
+ 𝐶 = ln(𝑧) → + 𝐶 = ln(𝑧)
𝑥 𝑥
𝑦 2 + 𝐶𝑥
𝑅𝑝𝑡𝑎: = ln(𝑦 2 )
𝑥𝑦 2
Ejercicio 5:
(1 − 𝑥𝑦 2 )ⅆ𝑥 + 2𝑥 2 𝑦ⅆ𝑦 = 0
𝑦 = 𝑧𝛼 → ⅆ𝑦 = 𝑎𝑧 𝛼−1 ⅆ𝑧
(1 − 𝑥𝑧 )ⅆ𝑥 + 2𝑥 2 𝑧 𝛼 (𝑎𝑧 𝛼−1 ⅆ𝑧) = 0
2𝛼
Ejercicio 21:
ⅆ𝑦 −(3𝑥 2 𝑦 + 𝑦 2 )
= 𝑦(1) = 2
ⅆ𝑥 2𝑥 3 + 3𝑥𝑦
(3𝑥 2 𝑦 + 𝑦 2 )ⅆ𝑥 + (2𝑥 3 + 3𝑥𝑦)ⅆ𝑦 = 0
𝑦 = 𝑧𝛼 → ⅆ𝑦 = 𝑎𝑧 𝛼−1 ⅆ𝑧
(3𝑥 2 𝑧 𝛼 + 𝑧 2𝛼 )ⅆ𝑥 + (2𝑥 3 + 3𝑥𝑧 𝛼 )(𝑎𝑧 𝛼−1 ⅆ𝑧) = 0
(3𝑥 2 𝑧 𝛼 + 𝑧 2𝛼 )ⅆ𝑥 + (2𝑎𝑥 3 𝑧 𝛼−1 + 3𝑎𝑥𝑧 2𝛼−1 )ⅆ𝑧 = 0
2 + 𝑎 = 2𝑎 → 𝑎=2
𝑎
𝑦=𝑧 → 𝑦 = 𝑧2
Reemplazamos:
(3𝑥 2 𝑧 2 + 𝑧 4 )ⅆ𝑥 + (4𝑥 3 𝑧 + 6𝑥𝑧 3 )ⅆ𝑧 = 0
Tenemos:
𝑥 = 𝑣𝑧 → ⅆ𝑥 = 𝑣ⅆ𝑧 + 𝑧ⅆ𝑣
(3𝑣 2 𝑧 4 + 𝑧 4 )(𝑣ⅆ𝑧 + 𝑧ⅆ𝑣) + (4𝑥 3 𝑧 4 + 6𝑥𝑧 4 )ⅆ𝑧 = 0
3𝑣 3 𝑧 4 ⅆ𝑧 + 3𝑣 2 𝑧 5 ⅆ𝑣 + 𝑧 4 𝑣ⅆ𝑧 + 𝑧 5 ⅆ𝑣 + 4𝑥 3 𝑧 4 ⅆ𝑧 + 6𝑥𝑧 4 ⅆ𝑧 = 0
7𝑣 3 𝑧 4 ⅆ𝑧 + 3𝑣 2 𝑧 5 ⅆ𝑣 + 7𝑧 4 𝑣ⅆ𝑧 + 𝑧 5 ⅆ𝑣 = 0
𝑧 4 (7𝑣 3 ⅆ𝑧 + 3𝑣 2 𝑧ⅆ𝑣 + 7𝑣ⅆ𝑧 + 𝑧ⅆ𝑣) = 0
7𝑣 3 ⅆ𝑧 + 3𝑣 2 𝑧ⅆ𝑣 + 7𝑣ⅆ𝑧 + 𝑧ⅆ𝑣 = 0
(7𝑣 3 + 7𝑣)ⅆ𝑧 + (3𝑣 2 𝑧 + 𝑧)ⅆ𝑣 = 0
(7𝑣 3 + 7𝑣)ⅆ𝑧 = −𝑧(3𝑣 2 + 1)ⅆ𝑣
−1 3𝑣 2 + 1 −1 3𝑣 2 + 1
ⅆ𝑧 = 3 ⅆ𝑣 → ∫ ⅆ𝑧 = ∫ 3 ⅆ𝑣
𝑧 7𝑣 + 7𝑣 𝑧 7𝑣 + 7𝑣
1
−ln(𝑧) + 𝐶 = ln(7𝑣 3 + 7𝑣)
7
3
1 𝑥 𝑥
−ln(√𝑦) + 𝐶 = ln (7 ( ) + 7 ( ))
7 √𝑦 √𝑦
1 7𝑥 3 + 7𝑥𝑦
Rpta: − ln(√𝑦) + 𝐶 = ln ( )
7 𝑦√𝑦
Ejercicio 27:
(𝑥 2 𝑦 3 + 𝑥 4 𝑦 4 + 𝑥 4 𝑦 + 𝑥 2 𝑦 4 + 𝑦 4 + 𝑦 5 )ⅆ𝑥 − (𝑥 3 𝑦 2 + 𝑥 3 + 𝑥𝑦 4 )ⅆ𝑦 = 0
SOLUCION:
Hacemos 𝑦 = 𝑢𝑥 => ⅆ𝑦 = 𝑢ⅆ𝑥 + 𝑥ⅆ𝑢
Sustituyendo:
(𝑥 2 𝑥 3 𝑢3 + 𝑥 4 𝑥 4 𝑢4 + 𝑥 4 𝑢𝑥 + 𝑥 2 𝑢4 𝑥 4 + 𝑢4 𝑥 4 + 𝑢5 𝑥 5 )ⅆ𝑥 − (𝑥 3 𝑢2 𝑥 2 + 𝑥 5 +
𝑥𝑥 4 𝑢4 )(𝑢ⅆ𝑥 + 𝑥ⅆ𝑢) = 0
Simplificamos “x4”:
(𝑥𝑢3 + 𝑥 4 𝑢4 + 𝑢𝑥 + 𝑥 2 𝑢4 + 𝑢4 + 𝑢5 𝑥)ⅆ𝑥 − (𝑢2 𝑥 + 𝑥 + 𝑥𝑢4 )(𝑢ⅆ𝑥 + 𝑥ⅆ𝑢) = 0
(𝑥𝑢3 + 𝑥 4 𝑢4 + 𝑢𝑥 + 𝑥 2 𝑢4 + 𝑢4 + 𝑢5 𝑥)ⅆ𝑥 − (𝑢2 𝑥 + 𝑢𝑥 + 𝑥𝑢5 )ⅆ𝑥 − (𝑢3 𝑥 + 𝑥 +
𝑥𝑢4 )𝑥ⅆ𝑢 = 0
(𝑥𝑢3 + 𝑥 4 𝑢4 + 𝑢𝑥 + 𝑥 2 𝑢4 + 𝑢4 + 𝑢5 𝑥 − 𝑢2 𝑥 − 𝑢𝑥 − 𝑥𝑢5 )ⅆ𝑥 − (𝑢3 𝑥 + 𝑥 + 𝑥𝑢4 )𝑥ⅆ𝑢 = 0
(𝑥 4 𝑢4 + 𝑥 2 𝑢4 + 𝑢4 )ⅆ𝑥 − (𝑢2 𝑥 + 𝑥 + 𝑥𝑢4 )𝑥ⅆ𝑢 = 0
𝑢4 (𝑥 4 + 𝑥 2 + 1)ⅆ𝑥 − 𝑥 2 (𝑢2 + 1 + 𝑢4 )ⅆ𝑢 = 0
𝑥2 + 𝑥3 + 1 𝑢4 + 𝑢2 + 1
∫( ) ⅆ𝑥 − ∫ ( ) ⅆ𝑢 = 0
𝑥3 𝑢4
𝑥3 1 1 1
+ 𝑥 − − 𝑢 + + 5 = 𝐶 => 𝑥 4 𝑢3 + 3𝑥 2 𝑢3 − 3𝑢3 − 3𝑥𝑢4 + 3𝑥𝑢2 + 𝑥 = 𝐶𝑥𝑢3
3 𝑥 𝑢 3𝑢
=> 𝑅𝑝𝑡𝑎: 𝑥 4 𝑦 3 + 3𝑥 2 𝑦 3 − 3𝑦 3 − 3𝑦 4 + 3𝑥 2 𝑦 2 + 𝑥 4 = 𝐶𝑥𝑦 3
Ejercicio 31:
ⅆ𝑦 𝑦 2 − 𝑥
= ; 𝑠𝑢𝑔: 𝑧 = 𝑦 2
ⅆ𝑥 2𝑥𝑦
SOLUCION:
2𝑦𝑥ⅆ𝑦 = (𝑦 2 − 𝑥)ⅆ𝑥 ; 𝐻𝑎𝑐𝑒𝑚𝑜𝑠: 𝑧 = 𝑦 2 => ⅆ𝑧 = 2𝑦ⅆ𝑦
ⅆ𝑧
2𝑥𝑦 ( ) = (𝑧 − 𝑥)ⅆ𝑥 => 𝑥ⅆ𝑧 = (𝑧 − 𝑥)ⅆ𝑥 ; 𝑧 = 𝑥𝑡 => ⅆ𝑧 = 𝑥ⅆ𝑡 + 𝑡ⅆ𝑥
2𝑦
Sustituyendo: 𝑥 (𝑥ⅆ𝑡 + 𝑡ⅆ𝑥) = (𝑥𝑡 − 𝑥)ⅆ𝑥
ⅆ𝑥
𝑥ⅆ𝑡 + 𝑡ⅆ𝑥 = (𝑡 − 1)ⅆ𝑥 => 𝑥ⅆ𝑡 + ⅆ𝑥 = 0 => ∫ ⅆ𝑡 + ∫ =0
𝑥
𝑐
𝑡 + 𝐿𝑛(𝑥) = 𝐿𝑛(𝐶 ) => 𝑡 = 𝐿𝑛 ( ) => 𝑥 = 𝐶𝑒 −1
𝑥
𝑧 −𝑧 𝑦2
𝑃𝑒𝑟𝑜: 𝑡 = => 𝑥 = 𝐶𝑒 𝑥 => 𝑅𝑝𝑡𝑎: 𝑥 = 𝐶𝑒 𝑥
𝑥
Ejercicio 33:
(2𝑥𝑦 − 4𝑥 3 )ⅆ𝑥 − (2𝑥 − 𝑥 2 )ⅆ𝑦 = 0
SOLUCION:
𝑦 = 𝑧 2 => ⅆ𝑧 = 2𝑧ⅆ𝑧 => (2𝑥𝑧 2 − 4𝑥 3 )ⅆ𝑥 − (2𝑧 2 − 𝑥 2 )(2𝑧ⅆ𝑧) = 0
Homogénea de grado 3
𝐴ℎ𝑜𝑟𝑎: 𝑧 = 𝑥𝑡 => ⅆ𝑧 = 𝑥ⅆ𝑡 + 𝑡ⅆ𝑥
Sustituyendo: (2𝑥𝑥 2 𝑡 2 − 4𝑥 3 )ⅆ𝑥 − 2𝑥𝑡 (2𝑥 2 𝑡 2 − 𝑥 2 )(𝑥ⅆ𝑡 + 𝑡ⅆ𝑥) = 0
Simplificamos “2x3”: (𝑡 2 − 2)ⅆ𝑥 − 𝑡(2𝑡 2 − 1)(𝑥ⅆ𝑡 + ⅆ𝑡𝑥) = 0
(𝑡 2 − 2)ⅆ𝑥 − 𝑡(2𝑡 2 − 1)𝑥ⅆ𝑡 − 𝑡 2 (2𝑡 2 − 1)ⅆ𝑥 = 0
(𝑡 2 − 2 − 2𝑡 4 + 𝑡 2 )ⅆ𝑥 − (2𝑡 2 − 𝑡)𝑥ⅆ𝑡 = 0
(2𝑡 2 − 𝑡)ⅆ𝑡 ⅆ𝑥
2(𝑡 4 − 𝑡 2 + 1)ⅆ𝑥 + (2𝑡 2 − 𝑡)𝑥ⅆ𝑡 = 0 => 4 2
+2 =0
𝑡 −𝑡 +1 𝑥
(2𝑡 2 − 𝑡)ⅆ𝑡 ⅆ𝑥
∫( 4 2
)+ 2∫ = 0 => 𝐿𝑛( 𝑡 4 − 𝑡 2 + 1) + 2𝐿𝑛(𝑥) = 𝐿𝑛(𝐶)
𝑡 −𝑡 +1 𝑥
𝑧
𝐿𝑛[(𝑡 4 − 𝑡 2 + 1)𝑥 2 ] = 𝐿𝑛(𝐶 ) => (𝑡 4 − 𝑡 2 + 1)𝑥 2 = 𝐶 ⅆ𝑜𝑛ⅆ𝑒: 𝑡 =
𝑥
𝑥 2 𝑧 2 − 𝑧 2 + 𝑥 2 = 𝐶 ; 𝑃𝑒𝑟𝑜: 𝑦 = 𝑧 2 => 𝑅𝑝𝑡𝑎: 𝑥 2 𝑦 − 𝑦 + 𝑥 2 = 𝐶
Ejercicio 35:
1 1 1
(4𝑥𝑦 2 − 6𝑦) ⅆ𝑥 + (4𝑦 2 − 3𝑥) ⅆ𝑦 = 0 ; 𝑠𝑢𝑔𝑒𝑟𝑒𝑛𝑐𝑖𝑎: 𝑧 = 𝑦 2
SOLUCION:
1 ⅆ𝑦
𝑧 = 𝑦 2 => ⅆ𝑧 = => ⅆ𝑦 = 2𝑧ⅆ𝑧
2√𝑦
(4𝑥𝑧 − 6𝑧 2 )ⅆ𝑥 + (4𝑧 − 3𝑥)(2𝑧ⅆ𝑧) = 0 => 𝐻𝑜𝑚𝑜𝑔é𝑛𝑒𝑎 ⅆ𝑒 𝑠𝑒𝑔𝑢𝑛ⅆ𝑜 𝑔𝑟𝑎ⅆ𝑜
Ejercicio 37:
ⅆ𝑦 𝑦 + 4√𝑥
2 =−
ⅆ𝑥 𝑥 − 2𝑦√𝑥
SOLUCION:
ⅆ𝑦 𝑦+4 ⅆ𝑦 𝑦+4
𝑥 = 𝑧 2 => ⅆ𝑥 = 2𝑧ⅆ𝑧 => 2 =− 2 => =−
2𝑥ⅆ𝑥 𝑧 − 2𝑦𝑧 ⅆ𝑧 𝑧 − 2𝑦
Homogénea de grado cero
Ahora: 𝑦 = 𝑧𝑡 ; ⅆ𝑦 = 𝑧ⅆ𝑡 + 𝑡ⅆ𝑧
𝑧𝑑𝑡+𝑡𝑑𝑧 𝑧𝑡+4𝑧
Sustituyendo: =−
𝑑𝑧 𝑧−2𝑧𝑡
Simplificamos “z”: (1 − 2𝑧)(𝑧ⅆ𝑡 + 𝑡ⅆ𝑧) = −(𝑡 + 4)ⅆ𝑧
(1 − 2𝑡)𝑧ⅆ𝑡 + (1 − 2𝑡)𝑡ⅆ𝑧 + (𝑡 + 4)ⅆ𝑧 = 0
ⅆ𝑧 (2𝑡 − 1)ⅆ𝑡
(1 − 2𝑡)𝑧ⅆ𝑡 + (2𝑡 − 2𝑡 2 + 4)ⅆ𝑧 = 0 => 2 + 2 =0
𝑧 𝑡 −𝑡−2
ⅆ𝑧 (2𝑡 − 1)ⅆ𝑡
2∫ +∫ 2 = 0 => 2𝐿𝑛 (𝑧) + 𝐿𝑛 (𝑡 2 − 𝑡 − 2) = 𝐿𝑛(𝐶)
𝑧 𝑡 −𝑡−2
𝑦
𝐿𝑛[𝑧 2 (𝑡 2 − 𝑡 − 2)2 ] = 𝐿𝑛(𝐶 ) => 𝑧 2 (𝑡 2 − 𝑡 − 2)2 = 𝐶 => ⅆ𝑜𝑛ⅆ𝑒: 𝑡 =
𝑧
𝑦 2 − 𝑦𝑧 − 2𝑧 2 = 𝐶 𝑃𝑒𝑟𝑜: 𝑥 = 𝑧 2 => 𝑦 2 − 𝑦√𝑥 − 2𝑥 = 𝐶
=> 𝑅𝑝𝑡𝑎: 2𝑥 + 𝑦√𝑥 − 𝑦 2 = 𝐶
Ejercicio 39:
(𝑥𝑦 2 + 𝑦)ⅆ𝑥 − 𝑥ⅆ𝑦 = 0
SOLUCION:
(𝑥𝑦 2 + 𝑦)ⅆ𝑥 − 𝑥ⅆ𝑦 = 0 ; 𝐻𝑎𝑐𝑒𝑚𝑜𝑠: 𝑦 = 𝑢𝑥 => ⅆ𝑦 = 𝑢ⅆ𝑥 + 𝑥ⅆ𝑢
Sustituyendo: (𝑥𝑥 2 𝑢2 + 𝑢𝑥)ⅆ𝑥 − 𝑥(𝑥ⅆ𝑢 + 𝑢ⅆ𝑥) = 0 => 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑚𝑜𝑠 "𝑥"
(𝑥 2 𝑢2 + 𝑢)ⅆ𝑥 − 𝑥ⅆ𝑢 − 𝑢ⅆ𝑥 = 0 => 𝑥 2 𝑢2 ⅆ𝑥 − 𝑥ⅆ𝑢 = 0
ⅆ𝑢 ⅆ𝑢 𝑥2 1
𝑥ⅆ𝑥 − = 0 => ∫ 𝑥ⅆ𝑥 − ∫ = 0 => + =𝐶
𝑢2 𝑢2 2 𝑢
𝑦 𝑥2 𝑥
Donde: 𝑢 = => + 𝑦 = 𝐶 => 𝑅𝑝𝑡𝑎: 𝑦𝑥 2 + 2𝑥 = 𝐶𝑦
𝑥 2
Ejercicio 41:
(3𝑥 5 + 3𝑥 2 𝑦 2 )ⅆ𝑥 + (2𝑦 3 − 2𝑥 3 𝑦)ⅆ𝑦 = 0
SOLUCION:
𝑦 2 = 𝑢𝑥 3 ; 2𝑦ⅆ𝑦 = 3𝑥 2 𝑢ⅆ𝑥 + 𝑥 3 ⅆ𝑢) = 0 => 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑚𝑜𝑠 "𝑥 5 "
3(1 + 𝑢)ⅆ𝑥 + (𝑢 − 1)(3𝑢ⅆ𝑥 + 𝑥ⅆ𝑢) = 0
3(1 + 𝑢)ⅆ𝑥 + 3(𝑢 − 1)ⅆ𝑥 + 𝑥ⅆ𝑢 = 0 => 6𝑢ⅆ𝑥 + 𝑥ⅆ𝑢 = 0
ⅆ𝑥 ⅆ𝑢
6 + = 0 ; 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑛ⅆ𝑜:
𝑥 𝑢
6𝐿𝑛𝑥 + 𝐿𝑛𝑢 = 𝐶
𝐿𝑛𝑥 6 𝑢 = 𝐶 => 𝑥6 𝑢 = 𝐶
𝑦2
𝑥6 =𝐶 => 𝑥3 𝑦 2 = 𝐶
𝑥2
𝑅𝑝𝑡𝑎: 𝑥 3 𝑦 2 = 𝐶