Carburo de Titanio
Carburo de Titanio
Carburo de Titanio
CARBURO DE TITANIO
SOME CONCEPTS ABOUT TITANIUM NITRIDE AND
TITANIUM CARBIDE
ELISABETH RESTREPO PARRA
Grupo de Desarrollo de Nuevos Materiales, Universidad Nacional de Colombia, Sede Manizales, erestrepop@unal.edu.co
RESUMEN: En este artculo se presentan algunas caractersticas estructurales y qumicas de materiales utilizados
comnmente en aplicaciones industriales como nitruro de titanio (TiN) y carburo de titanio (TiC). El anlisis inicial
se llev a cabo a partir de los diagramas de fase del TiN y el TiC. En ellos se observan propiedades importantes
como punto de fusin, punto de evaporacin, polimorfismo y solubilidad entre otros. La comprensin de estos
diagramas de fase lleva a un mejor entendimiento de las caractersticas de estos materiales. Por otro lado se hizo una
evaluacin de los enlaces qumicos que resultan en la formacin de las molculas del TiN y TiC, teniendo en cuenta
que en estos compuestos se presenta una combinacin de enlaces inico, covalente y metlico, lo que les otorga
excelentes propiedades elctricas mecnicas y tribolgicas. Adems, se consider la hibridacin que se produce para
conseguir compuestos estables.
PALABRAS CLAVE: fases, temperatura, enlaces moleculares, hibridacin.
ABSTRACT: In this work a sumary of structural and chemical characteristics of materials commonly employed in
industrial applications such as TiN and TiC was realized. The analysis was realized from the phase diagrams of TiN
and TiC. This materials present, important characteristics such as melting point, boiling point, polymorphism and
solubility among others, are observed. These phase diagrams carry to a best understanding to the material properties.
On the other hand, an analysis of chemical bonds that result in the TiN and TiC molecules formation, having into a
count that they present ionic, covalent and metallic molecular combination bonds was carried out. Moreover, the
hybridization that is produced in order to get stable compounds was considered.
KEYWORDS: Phases, temperature, molecular bonds, hybridization.
1.
INTRODUCCIN
Dyna, Ao 76, Nro. 157, pp. 213-224. Medelln, Marzo de 2009. ISSN 0012-7353
214
Restrepo et al
215
DIAGRAMAS DE FASES
2.1
Sistema Ti-N
Restrepo et al
4 6 8 10
15
20 25
35 00
3290
20 00
2350
2020
1670
-T i
2 -T
15 00
-Ti
1050
10 00
882
-T iN
(b)
Ti2N
-Ti + Ti2N
-Ti + Ti2N
-Ti
-Ti + -Ti
25 00
+
-T
i
30 00
-Ti + -TiN
-Ti + -Ti
L+ -Ti
L + -Ti
(c)
1100
800
-T i+ T i2N
50 0
N 0
10
20
Ti
30
40
50
(a)
0
10
2 500
20
30
3 000
L+T iC
T iC
2 000
T iC +L
L + -Ti
216
L+T 2i C
T iC + G rafito
1 500
-T i
-T i+T2i C
-T i + -T i
1 000
-Ti
T i2C
-T i+T i2C
500
0
10
20
30
40
50
60
70
(d)
Figura 1. (a) Diagrama de fases del sistema TiN
[47, 48]. (b) Mezcla de fases liquida y slida (c)
Mezcla de dos fases slidas (d) Diagrama de fases
del sistema Ti-C [49, 50]
Figure 1. Phase diagram of the Ti-N system [47,
48]. (b) Mixture of solid and liquid phases (c)
Mixture of two solid phases. (d) Phase diagram of
the Ti-C system [49, 50]
217
(b)
(c)
(a)
(d)
(e)
Figura 2. Diferentes estructuras del sistema Ti-N. a) -Ti, b) -Ti, c) Ti2N, d) -TiN e) '-TiN [47]
Figure 2. Different structures of the Ti-N system. a) -Ti, b) -Ti, c) Ti2N, d) -TiN e) '-TiN [47]
Punto
No.
1
2
3
4
5
6
7
8
Reaccin
-Ti
L -Ti
L+ -Ti -Ti
L+ -Ti -Ti
-Ti -Ti+Ti2N
-Ti Ti2N
Ti2N + -Ti -Ti
L TiN
Tipo de reaccin
Alotrpica
1670
12.5
2020
Peritctico
28
30
33.3
37.5
47.4
2350
1050
1100
800
3290
Peritctico
Eutectoide
Congruente
Peritectoide
P. Fusin congruente
Restrepo et al
218
Punto
No.
1
2
3
4
5
6
2.2
Reaccin
-Ti
L -Ti
L -Ti + Ti2C
L TiC
TiC Ti2C
L TiC + C
Alotrpica
1670
0.6
1648
Eutctico
44
33
63
3067
Aprox 1900
2776
Congruente
Congruente
Eutctico
Sistema Ti-C
3.
Tipo de reaccin
ENLACES QUIMICOS
Nitruro de Titanio
219
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
Ne-
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
TiN+
Nube de electrones
Nitrgeno
Titanio
(a)
(b)
(c)
Figura 3. Enlaces covalentes formados en el sistema TiN, para el plano (100) del -TiN (a) Enlace (b) Enlace
. (c) Enlace [6, 54]
Figure 3. covalent bonds formed in the Ti-N system, for
the plane (100) of -TiN (a) bond. (b) bonds. (c)
bonds [6, 54]
N-
Ti+
Restrepo et al
220
6N or bitales
1Ne 3d, 4s
Ti
2s , 2p
N
4N orb itales
8N e -
3. 2
Carburo de Titanio
T it a n io
C a rb n
Orbitales
spd
3d
Ti
2s, 2p
221
6N e-
4.
CONCLUSIONES
Restrepo et al
222
5.
[6]
PIERSON H. O. Handbook of
refractory carbides and nitrides, (USA, Ed.
Noyes Publications, 1996).
[7]
SHIEU F.S., L.H. CHENG, Y.C.
SUNG, J.H. HUANG, G.P. YU, Thin Solid
Films 334 (1998) 125-132.
[8]
LECLAIR P., G.P. BERERA, J.S.
MOODERA, Thin Solid Films 376 (2000) 915
[9]
HUBER P., D. MANOVA, S.
MNDL, B. RAUSCHENBACH, Surf.
Coat. Technol., 174-175 (2003) 1243-1247.
AGRADECIMIENTOS
[10]
XIAO S., C. P. LUNGU, O. TAKAI,
Thin Solid Films 334 (1998) 173-177
[11]
RADHAKRISHNAN
G.,
P.M.
ADAMS, D.M. SPECKMAN, Thin Solid
Films 358 (2000) 131-138.
REFERENCIAS
[12]
WEI CHEHUNG, JEN FIN LIN,
TSAE-HWA JIANG, CHI-FONG AI, Thin
Solid Films 381 (2001)104-118.
[1]
LVY F., P. HONES, P.E. SCHMID, R.
SANJINS, M. DISERENS, C. WIEMER, Surf.
Coat. Technol. 120121 (1999) 284290.
[13]
TEER,
coatings
ltda
www.teercoatings.co.uk
[citado
10de
septiembre de 2008].
[2]
RESTREPO-PARRA E., S. AMAYARONCANCIO, C.M. BEDOYA-HINCAPIE, J.C.
RIAO-ROJAS, Superlattices and Microstructures,
43 (2008) 559-563.
[14]
BRYCOAT
Advanced
Metallurgical
Coatings
http://www.brycoat.com
[citado
10de
septiembre de 2008].
[3]
GALASSO F. S., Structure and Properties
of Inorganic Solids, Pergamon Press, New York
(1970)
[15]
IRWIN,
Industrial
tools
http://www.irwin.com
[citado
10de
septiembre de 2008].
[4]
KISLY P. S., The Chemical Bond Strength
and the Hardness of High Melting Point
Compounds, in Science of Hard Materials, Institute
of Physics Conf. Series No. 75, Adam Hilger Ltd.,
Bristol, UK (1984).
[16]
KATIPELLI L. R., A. AGARWAL,
N. B. DAHOTRE, Mater. Sci. Eng. A289
(2000) 3440.
[5]
WELSH G., R. BOYER, E. W. COLLINS,
Material properties Handbook: Titanium alloys,
(Ohio-USA, Ed. ASM, 1994).
[17]
SHI B., W. J. MENG, L. E. REHN
AND P. M. BALDO, App. Phys. Letters, 81
(2002) 352-354.
[18]
MENGA
W.J.,
R.C.
TITTSWORTHB, L.E. REHN, Thin Solid
Films 377-378 (2000) 222-232.
223
[19]
RADHAKRISHNAN G., P.M. ADAMS,
D.M. SPECKMAN, Thin Solid Films 358 (2000)
131-138.
[32]
WARD L. P., K. N. STRAFFORD,
C. SUBRAMANIAN, T. P. WILKS, J.
Mater. Proc. Technol., 56 (1996) 375-384.
[20]
WANG J, WEN-ZHI LI, HENG-DE LI,
Thin Solid Films 382 (2001) 190-193.
[33]
MUELLER TH., A. GEBESHUBER,
R. KULLMER, CH. LUGMAIR, S.
PERLOT, M. STOIBER, MTAEC9, 38
(2004) 353.
[34]
REBELO DE FIGUEIREDO M., J.
NEIDHARDT, R. KAINDL, A. REITER, R.
TESSADRI, C. MITTERER, Wear, 265
(2008) 525-532.
[35] ZUKERMAN I., A. RAVEH, Y.
LANDAU, R. WEISS, R. SHNECK, Y.
SHNEOR, H. KALMAN, J.E. KLEMBERGSAPHIEHA, L. MARTINU, Surf. Coat.
Technol., 201 (2007) 6171-6175.
[36]
KARLSSON L., L. HULTMAN, J.E. SUNDGREN, Thin Solid Films 371
(2000) 167-177.
[37]
KODENTSOV G. F. BASTIN, F. J.
J. VAN LOO, J. Alloys Compounds, 320
(2001) 207-217.
[38]
SMITH W. F., Fundamentos de la
ciencia e ingeniera de materiales, (Espaa,
Ed. McGraw-Hill, 1998)
[39]
SHACKELFORD J. F., Introduccin
a la ciencia de materiales para ingenieros,
(Espaa, Prentice Hall, 1998)
[40]
ZHAO J.-C., Methods for Phase
Diagram Determination (Elsevier Ltda 2007),
Shortcut
URL
to
this
page:
http://www.sciencedirect.com/science/book/9
780080446295. [citado 15 de septiembre de
2008].
[41]
LENGAUER W., P. ETTMAYER, J.
Alloys Compounds, 178 (1992)205-209.
[42] ZHANG P., X. ZHANG, J.
Computational Phys., 227 (2008) 5859-5870.
224
Restrepo et al
[43]
STANLEY H. E., Introduction to phase
transitions and critical phenomena, (USA, Ed.
Oxford University Press, 1971).
[44]
TUPPEN S.J., M.R. BACHE, W.E.
VOICE, Internat. J. Fatigue, 27 (2005) 651-658.
[45]
DEVIA A., V. BENAVIDES, E.
RESTREPO, D.F. ARIAS, R. OSPINA, Vacuum,
81 (2006) 378-384.
[46]
YOUTSOS A. G., M. KIRIAKOPOULOS,
TH. TIMKE, Theoret. Appl. Fracture Mech., 31
(1999) 47-59.
[47]
WOLFF L., G. BASTIN, H. HEIJLIGERS,
Solid State Ionics, 16 (1985) 105-112.
[48]
HOHMUTH A., B. RAUSCHENBACH,
Mater. Sci. Eng., 69 (1985) 489-49
[49]
TEYSSANDIER F., M. DUCARROIR, C.
BERNARD, Calphad 8 (1984) 233-242.
[50]
KAUFMAN L., H. NESOR, Calphad, 2
(1978) 295-318.
[51]
LUGSCHEIRDER E.A., O. KNOTEK, H.
ZIMMERMANN, S. HELLMANN. Surf. Coat.
Technol., 116-119 (1999) 239-243.
[52]
BERTTI I., Surf. Coat. Technol., 151-152
(2002) 194-203.
[53]
VAZ F., J. FERREIRA, E.
RIBEIRO, L. REBOUTA, S. LANCEROSMNDEZ, J. A. MENDES, E. ALVES, PH.
GOUDEAU, J. P. RIVIRE, F. RIBEIRO, I.
MOUTINHO, K. PISCHOW, J. DE RIJK,
Surf. Coat. Technol., 191 (2005),317-323.
[54]
DASA
T.,
S.
DEBB,
A.
MOOKERJEE, Physica B 367 (2005) 618
[55]
LEVINE I. N., Quantum chemestry,
(USA, Ed. Prentice Hall, 1983).
[56]
SONG B. J. Phys.: Condens. Matter
10 (1998) 9443-9454
[57]
ZHANG Q., STEVEN P. LEWIS,
Chem. Phys. Letters 372 (2003) 836841
[58]
SIVASUBRAMANIAN
Nuclear Mat. 341 (2005) 90-92.
K.,
J.
[59]
ZHANG Y., J.LI, L. ZHOU, S
XIANG, Solid State Comun, 121 (2002) 411416.
[60]
ZAOUI A., S. KACIMI, B.
BOUHAFS, A. ROULA, Physica B 358
(2005) 6371
[61]
LIA J.-Q., Y.-F. ZHANG, SH.-CH.
XIANG, Y.-N. CHIU, J. Molecular Structure
(Theochem) 530 (2000) 209216.