Fosgeno
Fosgeno
Fosgeno
com/science/article/pii/S0926860X09003573
http://www.sciencedirect.com/science/article/pii/S0040403913013099
http://www.sciencedirect.com/science/article/pii/S0032386116303007
http://www.sciencedirect.com/science/article/pii/S0960894X12004994
http://www.sciencedirect.com/science/article/pii/S0969805109002182
http://www.sciencedirect.com/science/article/pii/S0960894X1101599X
http://www.sciencedirect.com/science/article/pii/S0040403909021315
http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-
1076829565&_sort=r&_st=13&view=c&md5=d30d4d722116c0fd830fb80ae497e11f&searchtype=
a
fosgeno
http://www.sciencedirect.com/science/article/pii/B9780123864543009039
inreoduccion
http://www.sciencedirect.com/science/article/pii/B0123694000007584 pdf
http://www.sciencedirect.com/science/article/pii/S0082495X07800102 mxtante
http://www.sciencedirect.com/science/article/pii/S0082495X07800060
Este capítulo resume el descubrimiento del fosgeno y presenta la importancia histórica, científica y
sociológica del fosgeno. Phosgene sigue siendo fabricado en la escala de varios millones de
toneladas en todo el mundo. Phosgene se emplea por primera vez en la década de 1880 para la
preparación de cristal violeta y precursor de tinte. Las insidiosas aplicaciones del fosgeno que se
discuten en el capítulo cambiarían la percepción de este útil químico industrial para siempre
cambiaría su carácter a tal punto que la discusión racional de su uso se haría muy difícil en un foro
público. El capítulo detalla su fabricación y sus usos actuales. Es un producto intermedio para la
producción de una amplia gama de materiales orgánicos, con una gama aún más diversa de usos
finales, incluyendo espumas de poliuretano (para aplicaciones de automoción, muebles,
aislamiento térmico y calzado) e isocianatos, cloroformatos, carbonatos, ureas, Y carbamatos
(para aplicaciones médicas, agrícolas, de colorantes, de perfumería, de disolventes, de
estabilizadores de explosivos o de polímeros especiales). También es un reactivo clave en la
síntesis total del fármaco anticanceroso taxol. Se dice que Phosgene es probablemente el gas más
venenoso usado en la industria.
http://www.sciencedirect.com/science/article/pii/S0082495X07800254
nivel industrial
Obtención del fosgeno
Tabla 1
Densidad rel ativa (agua = 1): 1,4 Presión Crítica : 56.7 bar
Solubilidad en agua: reacciona Volumen Específico (1.013 bar y 21 °C (70 °F)) : 0.243 m3/kg
Introducción
fosgeno en el siglo XIX, se ha utilizado además como un agente letal de guerra química.
This Section deals with the various means of activating the reaction between CO and CI
means, and ends with a special Section dealing with the generation of phosgene from the
Photochemical synthesis : notably, investigation of this system led to the discovery and
studies use u.v. light to promote reaction, visible light will also initiate the reaction . In
1907, Weigert showed that the effect of light upon the equilibrium between CO, CI 2 and
COCI 2 was purely catalytic, and did not effect the position of final equilibrium. The
importance of truly anhydrous conditions had been highlighted as early as 1923 . Although
a later investigator found that the presence of small amounts of water did not alter,
appreciably, the measured reaction kinetics, the seminal work of Bodenstein clearly
emphasizes (perhaps not surprisingly) the importance of really dry reagents and apparatus,
The first serious studies of the kinetics of photochemically induced phosgene formation
the simplest mechanism at ambient temperature and normal pressures for the
C1 2 + hɣ 2C1*
Cl* + CO [COC1]*
[COC1]* CO + Cl
CO + Cl* + C12 COC12+ Cl*
Thermal synthesis : The thermal synthesis of phosgene involves the reaction of carbon
CO + C12 COC12
equilibrium are usually based upon measurements of pressure in static systems. Owing to
the slow rate of reaction, thermal equilibria can only be measured normally at temperatures
above about 350° C . However, in studies extending over several months, the thermal
formation of 230 phosgene, via reaction , has been perceived at temperatures as low as
Cl2 2CI*
[C13]* + Cl 2C12
Historia del Phosgeno
The history of the discovery of phosgene began almost thirty years before John Davy's
notable paper presented to the Royal Society on February 6 th, 1812 , which ended the
Production of phosgene in France during WWl was initially based on synthesis from
tetrachloromethane and sulfuric acid. About 430 tons of phosgene were produced by this
method, but by 1916 the French switched to the German method using the reaction between
dichlorine; while In America, phosgene was made from combination of carbon monoxide
On the other hand, Italy produced the gas at the Rumjanki factory in the North. Prepared
from oleum and tetrachloromethane, the method was satisfactory in all but cost. The
Italians went over to the German method, using a bone charcoal catalyst, thus raising their
production up to 4 tons per day using this method, and up to 6 tons per day by 1918.
The United Alkali Company used carbon monoxide generated from producer gas
(containing only about 30% CO) and dichlorine obtained from the Weldon process, an early
oxide. These impure reactants were combined over wood charcoal and the dilute phosgene
product (which could not be separated from the permanent gases present by means of
for use in the production of TDI for polyurethane resins . In 1957, the US International
Trade Commission (USITC) reported the production of phosgene to be about 2.5 kt, and
production thereafter increased sharply throughout the 1960s and 1970s as the demand for
isocyanates, and other materials manufactured from phosgene, expanded. The world
materials, with an even more diverse range of end uses, including polyurethane foams (for
Current World production is estimated at 2700 kt. The current demand for phosgene is
strong for most of its end uses, but owing to the disproportionate demand in polyurethane
manufacture, the growth rate for phosgene may be expected to parallel the growth rate for
polyurethanes for the foreseeable future. Based on new MDI and polycarbonate
Phosgene is known to be produced in the USA, Japan, Germany, France, Belgium, Italy,
Netherlands, Britain, Canada, Spain, India, Australia, Brazil, Hungary, Switzerland and
China. No production of phosgene is known for the African continent, and comparatively
etiquetado versátil en radioquímica para PET. El [11C] CH4 producido con ciclotrón se
mezcla con Cl2 y se convierte en [11C] CCl4 haciendo pasar la mezcla a través de un tubo
que extrae Cl2 y luego, sin adición intencional de O2, a través de un segundo tubo de
cuarzo vacío a 750 ° C, dando lugar al fosgeno [11C] con un rendimiento radioquímico de
30-35%.
Referencias:
http://www.sciencedirect.com/science/article/pii/B9780123864543009039
313-316. Recuperado de
http://www.Sciencedirect.com/science/article/pii/S0040403909021315
http://www.sciencedirect.com/science/article/pii/S0082495X07800254
Recuperado de : http://www.sciencedirect.com/science/article/pii/S0082495X07800060
http://www.sciencedirect.com/science/article/pii/S0082495X07800102
10 bibliogafrias