Nothing Special   »   [go: up one dir, main page]

Fosgeno

Descargar como docx, pdf o txt
Descargar como docx, pdf o txt
Está en la página 1de 11

http://www.sciencedirect.

com/science/article/pii/S0926860X09003573

http://www.sciencedirect.com/science/article/pii/S0040403913013099

http://www.sciencedirect.com/science/article/pii/S0032386116303007

http://www.sciencedirect.com/science/article/pii/S0960894X12004994

http://www.sciencedirect.com/science/article/pii/S0969805109002182

http://www.sciencedirect.com/science/article/pii/S0960894X1101599X

http://www.sciencedirect.com/science/article/pii/S0040403909021315

http://www.sciencedirect.com/science/article/pii/S0021951709004163 ciclo de tres

http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-
1076829565&_sort=r&_st=13&view=c&md5=d30d4d722116c0fd830fb80ae497e11f&searchtype=
a

fosgeno

http://www.sciencedirect.com/science/article/pii/B9780123864543009039

inreoduccion

http://www.sciencedirect.com/science/article/pii/B0123694000007584 pdf

http://www.sciencedirect.com/science/article/pii/S0082495X07800072 (actividad biologica)

http://www.sciencedirect.com/science/article/pii/S0082495X07800102 mxtante
http://www.sciencedirect.com/science/article/pii/S0082495X07800060

Este capítulo resume el descubrimiento del fosgeno y presenta la importancia histórica, científica y
sociológica del fosgeno. Phosgene sigue siendo fabricado en la escala de varios millones de
toneladas en todo el mundo. Phosgene se emplea por primera vez en la década de 1880 para la
preparación de cristal violeta y precursor de tinte. Las insidiosas aplicaciones del fosgeno que se
discuten en el capítulo cambiarían la percepción de este útil químico industrial para siempre
cambiaría su carácter a tal punto que la discusión racional de su uso se haría muy difícil en un foro
público. El capítulo detalla su fabricación y sus usos actuales. Es un producto intermedio para la
producción de una amplia gama de materiales orgánicos, con una gama aún más diversa de usos
finales, incluyendo espumas de poliuretano (para aplicaciones de automoción, muebles,
aislamiento térmico y calzado) e isocianatos, cloroformatos, carbonatos, ureas, Y carbamatos
(para aplicaciones médicas, agrícolas, de colorantes, de perfumería, de disolventes, de
estabilizadores de explosivos o de polímeros especiales). También es un reactivo clave en la
síntesis total del fármaco anticanceroso taxol. Se dice que Phosgene es probablemente el gas más
venenoso usado en la industria.

http://www.sciencedirect.com/science/article/pii/S0082495X07800254

nivel industrial
Obtención del fosgeno

Tabla 1

Propiedades físico-químicas del fosgeno

Punto de ebullición: 8°C Densidad relativa de vapor (aire = 1): 3,4

Punto de fusión: -118°C Temperatura Crítica : 182 °C

Densidad rel ativa (agua = 1): 1,4 Presión Crítica : 56.7 bar

Solubilidad en agua: reacciona Volumen Específico (1.013 bar y 21 °C (70 °F)) : 0.243 m3/kg

CaCapacidad calorífica a presión constante (Cp) (1.013 bar y 25

°C (77 °F)) : 5.769014E-02 kJ/(mol.K)

Descripción de las propiedades fisicoquímicas del fosgeno

Introducción

El fosgeno es un producto químico común usado en la síntesis de isocianatos, polímeros

incluyendo poliuretanos, colorantes, pesticidas y herbicidas, y se utiliza en la separación de

metales en los minerales de ciertos óxidos metálicos. Después de la primera síntesis de

fosgeno en el siglo XIX, se ha utilizado además como un agente letal de guerra química.

(Gad, 2014, p.904-906)


Síntesis del Fosgeno a partir del monóxido de carbono

This Section deals with the various means of activating the reaction between CO and CI

2, or other chlorinating agent, by photochemical, thermal, catalytic, or electrochemical

means, and ends with a special Section dealing with the generation of phosgene from the

reaction of CO with inorganic chlorides.

Photochemical synthesis : notably, investigation of this system led to the discovery and

christening of phosgene (~produced by light") by John Davy . Although, as expected, most

studies use u.v. light to promote reaction, visible light will also initiate the reaction . In

1907, Weigert showed that the effect of light upon the equilibrium between CO, CI 2 and

COCI 2 was purely catalytic, and did not effect the position of final equilibrium. The

importance of truly anhydrous conditions had been highlighted as early as 1923 . Although

a later investigator found that the presence of small amounts of water did not alter,

appreciably, the measured reaction kinetics, the seminal work of Bodenstein clearly

emphasizes (perhaps not surprisingly) the importance of really dry reagents and apparatus,

The first serious studies of the kinetics of photochemically induced phosgene formation

were made by Bodenstein. 5Syntesis and formation of phosgene (2007).

d[COC12]/dt = kI[Cl 2][CO ]

the simplest mechanism at ambient temperature and normal pressures for the

photochemical formation of phosgene is that proposed by Bodenstein, Lenher and Wagner:

C1 2 + hɣ 2C1*

Cl* + CO [COC1]*

[COC1]* CO + Cl
CO + Cl* + C12 COC12+ Cl*

[COC1]* + Cl* CO + C12

Thermal synthesis : The thermal synthesis of phosgene involves the reaction of carbon

monoxide with dichlorine induced by purely thermal, as opposed to catalytic:

CO + C12 COC12

Since this reaction involves a reduction in pressure, investigations of the thermal

equilibrium are usually based upon measurements of pressure in static systems. Owing to

the slow rate of reaction, thermal equilibria can only be measured normally at temperatures

above about 350° C . However, in studies extending over several months, the thermal

formation of 230 phosgene, via reaction , has been perceived at temperatures as low as

160°C. 5Syntesis and formation of phosgene (2007).

d[COCl2]/d t = x,[CO][C12]^3/2 -x2[COCI2][CI2] ^2

where xl/x 2 = K = [C0][C12]/[COC12]

Cl2 2CI*

Cl* + Cl2 [c13]*

[Cl3]*+ CO COC1 2 + Cl*

Cl*+ COCI 2 [C13]* + CO

[C13]* + Cl 2C12
Historia del Phosgeno

The history of the discovery of phosgene began almost thirty years before John Davy's

notable paper presented to the Royal Society on February 6 th, 1812 , which ended the

controversy concerning the nature of chlorine.

Production of phosgene in France during WWl was initially based on synthesis from

tetrachloromethane and sulfuric acid. About 430 tons of phosgene were produced by this

method, but by 1916 the French switched to the German method using the reaction between

pure carbon monoxide (obtained by burning hydrogen-free coke in dioxygen) and

dichlorine; while In America, phosgene was made from combination of carbon monoxide

and dichlorine in graphite tubes.

On the other hand, Italy produced the gas at the Rumjanki factory in the North. Prepared

from oleum and tetrachloromethane, the method was satisfactory in all but cost. The

Italians went over to the German method, using a bone charcoal catalyst, thus raising their

production up to 4 tons per day using this method, and up to 6 tons per day by 1918.

The United Alkali Company used carbon monoxide generated from producer gas

(containing only about 30% CO) and dichlorine obtained from the Weldon process, an early

manufacturing process based on the reaction of hydrochloric acid with manganese(IV)

oxide. These impure reactants were combined over wood charcoal and the dilute phosgene

product (which could not be separated from the permanent gases present by means of

refrigeration,) was dissolved into tetrachloroethane and then recovered by fractionation.

Proper wide-scale industrial, non-military, manufacture of phosgene began in the mid-50s,

for use in the production of TDI for polyurethane resins . In 1957, the US International
Trade Commission (USITC) reported the production of phosgene to be about 2.5 kt, and

production thereafter increased sharply throughout the 1960s and 1970s as the demand for

isocyanates, and other materials manufactured from phosgene, expanded. The world

production of phosgene in 1977 was approximately 1300 kt

In 1994 It becomes an intermediate for the production of a wide-range of organic

materials, with an even more diverse range of end uses, including polyurethane foams (for

automotive, furniture, thermal insulation and footwear applications) and isocyanates,

chloroformates, carbonates, ureas and carbamates (for medical, agricultural, dyestuff,

perfumery, solvent, explosive stabilizers or speciality polymer applications). It is also a key

reagent in the total synthesis of the anti-cancer drug, taxol.

Current World production is estimated at 2700 kt. The current demand for phosgene is

strong for most of its end uses, but owing to the disproportionate demand in polyurethane

manufacture, the growth rate for phosgene may be expected to parallel the growth rate for

polyurethanes for the foreseeable future. Based on new MDI and polycarbonate

applications, captive phosgene production should continue to expand.

Phosgene is known to be produced in the USA, Japan, Germany, France, Belgium, Italy,

Netherlands, Britain, Canada, Spain, India, Australia, Brazil, Hungary, Switzerland and

China. No production of phosgene is known for the African continent, and comparatively

little data are available for the Former Soviet Union.


Se describe un nuevo sistema de flujo para la producción de [11C] fosgeno, un agente de

etiquetado versátil en radioquímica para PET. El [11C] CH4 producido con ciclotrón se

mezcla con Cl2 y se convierte en [11C] CCl4 haciendo pasar la mezcla a través de un tubo

de cuarzo vacío a 510 ° C. El flujo de salida se dirige a través de un protector lleno de Sb

que extrae Cl2 y luego, sin adición intencional de O2, a través de un segundo tubo de

cuarzo vacío a 750 ° C, dando lugar al fosgeno [11C] con un rendimiento radioquímico de

30-35%.
Referencias:

S.C. Gad(2014). Phosgene Reference Module in Blomedical sciences.Encyclopedia

of toxicology (Third Edition), 904-906.Recuperado de

http://www.sciencedirect.com/science/article/pii/B9780123864543009039

Y.Bramoulé(2009). A simplified phosgene synthesis. Tetrahedron Letters, 2(51),

313-316. Recuperado de

http://www.Sciencedirect.com/science/article/pii/S0040403909021315

W.Burkville(2007). A1Phosgehe:industrial output. Topics in inorganic and General

Chemistry, (24), 865-867. Recuperado de :

http://www.sciencedirect.com/science/article/pii/S0082495X07800254

(2007).History of phosgene. Topics in inorganic and General Chemistry,(24),3-72.

Recuperado de : http://www.sciencedirect.com/science/article/pii/S0082495X07800060

(2007). 5Syntesis and formation of phosgene. Topics in inorganic and General

Chemistry(1996), (24), 223-266. Recuperado de :

http://www.sciencedirect.com/science/article/pii/S0082495X07800102
10 bibliogafrias

También podría gustarte