Nothing Special   »   [go: up one dir, main page]

Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiaegene function

Abstract

Background

Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships.

Results

We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships.

Conclusion

Funckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.