Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea
"> Figure 1
<p>Location of study area from Daum map (<b>a</b>) Korea map and (<b>b</b>) Jumunjin area map marked by red boundary [<a href="#B2-remotesensing-10-01545" class="html-bibr">2</a>].</p> "> Figure 2
<p>Landslide area of Jumunjin marked by red circle in 2008 (<b>a</b>) and 2014 (<b>b</b>) (Daum map) [<a href="#B2-remotesensing-10-01545" class="html-bibr">2</a>].</p> "> Figure 3
<p>Landslide point of Jumunjin area marked by green circle on hill shade map.</p> "> Figure 4
<p>Workflow in this study.</p> "> Figure 5
<p>Spatial database of factors in Jumunjin area, slope (<b>a</b>), flow accumulation (<b>b</b>), maximum curvature (<b>c</b>), profile curvature (<b>d</b>), convexity (<b>e</b>), texture (<b>f</b>), surface area (<b>g</b>), mid-slope position (<b>h</b>), terrain ruggedness index (<b>i</b>), topographic position index (<b>j</b>), topographic wetness index (<b>k</b>), distance from fault (<b>l</b>), land cover (<b>m</b>), lithology (<b>n</b>), aspect (<b>o</b>), forest age (<b>p</b>), forest density (<b>q</b>), forest diameter (<b>r</b>), forest type (<b>s</b>), and soil material (<b>t</b>).</p> "> Figure 5 Cont.
<p>Spatial database of factors in Jumunjin area, slope (<b>a</b>), flow accumulation (<b>b</b>), maximum curvature (<b>c</b>), profile curvature (<b>d</b>), convexity (<b>e</b>), texture (<b>f</b>), surface area (<b>g</b>), mid-slope position (<b>h</b>), terrain ruggedness index (<b>i</b>), topographic position index (<b>j</b>), topographic wetness index (<b>k</b>), distance from fault (<b>l</b>), land cover (<b>m</b>), lithology (<b>n</b>), aspect (<b>o</b>), forest age (<b>p</b>), forest density (<b>q</b>), forest diameter (<b>r</b>), forest type (<b>s</b>), and soil material (<b>t</b>).</p> "> Figure 5 Cont.
<p>Spatial database of factors in Jumunjin area, slope (<b>a</b>), flow accumulation (<b>b</b>), maximum curvature (<b>c</b>), profile curvature (<b>d</b>), convexity (<b>e</b>), texture (<b>f</b>), surface area (<b>g</b>), mid-slope position (<b>h</b>), terrain ruggedness index (<b>i</b>), topographic position index (<b>j</b>), topographic wetness index (<b>k</b>), distance from fault (<b>l</b>), land cover (<b>m</b>), lithology (<b>n</b>), aspect (<b>o</b>), forest age (<b>p</b>), forest density (<b>q</b>), forest diameter (<b>r</b>), forest type (<b>s</b>), and soil material (<b>t</b>).</p> "> Figure 6
<p>Landslide susceptibility map of Chi-square automatic interaction detection (CHAID) algorithm. red area means Landslide susceptibility is very high, orange area means high, yellow area means medium, light green area means low, dark green area means very low.</p> "> Figure 7
<p>Landslide susceptibility map of exhaustive CHAID algorithm. red area means Landslide susceptibility is very high, orange area means high, yellow area means medium, light green area means low, dark green area means very low.</p> "> Figure 8
<p>Landslide susceptibility map of QUEST algorithm. red area means Landslide susceptibility is very high, orange area means high, yellow area means medium, light green area means low, dark green area means very low.</p> "> Figure 9
<p>ROC curve result of Jumunjin area CHAID (Green), exhaustive CHAID (Red), QUEST (Blue). <span class="html-italic">x</span>-axis means true positive rate, <span class="html-italic">y</span>-axis means false positive rate.</p> "> Figure 10
<p>ROC curve result of Jumunjin area, FR (Dotted), CHAID (Green), exhaustive CHAID (Red), QUEST (Blue). <span class="html-italic">x</span>-axis means TPR, <span class="html-italic">y</span>-axis means FPR.</p> ">
Abstract
:1. Introduction
2. Data and Pre-Processing
3. Method
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gariano, S.L.; Rianna, G.; Petrucci, O.; Guzzetti, F. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci. Total Environ. 2017, 596, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Daum Map. Available online: http://map.daum.net/ (accessed on 20 December 2017).
- Tsangaratos, P.; Ilia, I. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides 2016, 13, 305–320. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J.; Woo, I. The effect of spatial resolution on the accuracy of landslide susceptibility mapping: A case study in Boun, Korea. Geosci. J. 2004, 8, 51–60. [Google Scholar] [CrossRef]
- Hong, H.; Naghibi, S.A.; Pourghasemi, H.R.; Pradhan, B. GIS-based landslide spatial modeling in Ganzhou city, China. Arab. J. Geosci. 2016, 9, 1–26. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, I.; Won, J.S.; Lee, S. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomat. Nat. Hazards Risk 2016, 7, 424–446. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. Int. J. Remote Sens. 2016, 37, 1190–1209. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 41–47. [Google Scholar] [CrossRef]
- Steger, S.; Brenning, A.; Bell, R.; Petschko, H.; Glade, T. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 2016, 262, 8–23. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Honh, H.; Tien Bui, D.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Shadman, R.M.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B. Manifestation of an advanced fuzzy logic model coupled with geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ. Ecol. Stat. 2011, 18, 471–493. [Google Scholar] [CrossRef]
- Park, I.; Lee, J.; Lee, S. Ensemble of ground subsidence hazard maps using fuzzy logic. Cent. Eur. J. Geosci. 2014, 6, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Varzandeh, M.H.M. A new hybrid model using step-wise weight assessment ratio analysis (SWAM) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Nasiri Aghdam, I.; Varzandeh, M.H.M.; Pradhan, B. Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 2016, 75, 553–572. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, I.; Lee, S. Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: A case study of Seorak mountain area in Korea. Environ. Earth Sci. 2015, 74, 413–429. [Google Scholar] [CrossRef]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gomez-Gutierrez, A.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Bence River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Tien Bui, D.; Dholakia, M.B.; Prakash, I.; Pham, H.V. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech. Geol. Eng. 2016, 34, 1807–1824. [Google Scholar] [CrossRef]
- Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Benardos, A. Estimating landslide susceptibility through a artificial neural network classifier. Nat. Hazards 2014, 74, 1489–1516. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.; Jung, H. A support vector machine for landslide susceptibility mapping in Gangwon province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Hoang, N.D.; Thanh, N.Q.; Nguyen, D.B.; Liem, N.V.; Pradhan, B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 2017, 14, 447–458. [Google Scholar] [CrossRef]
- Oh, H.J. Landslide detection and landslide susceptibility mapping using aerial photos and artificial neural networks. Korean J. Remote Sens. 2010, 26, 47–57. [Google Scholar]
- Lee, S.; Kim, G.; Lee, C. Preliminary study for tidal flat detection in Yeongjong-do according to tide level using Landsat images. Korean J. Remote Sens. 2016, 32, 639–645. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, C.W. Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption. Korean J. Remote Sens. 2014, 30, 777–786. [Google Scholar] [CrossRef]
- Jang, J.; Eom, J.; Cheong, D.; Lee, C. Monitoring of the Estuary Sand Bar Related with Tidal Inlet in Namdaecheon Stream using Landsat Imagery. Korean J. Remote Sens. 2017, 33, 481–493. [Google Scholar] [CrossRef]
- Eom, J.; Lee, C. Analysis on the area of deltaic Barrier Island and suspended sediments concentration in Nakdong River using satellite images. Korean J. Remote Sens. 2017, 33, 201–211. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from dams by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Oh, C.Y.; Kim, K.T.; Choi, C.U. Analysis of landslide characteristics of Inje area using SPOT5 images and GIS analysis. Korean J. Remote Sens. 2009, 25, 445–454. [Google Scholar]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Roering, J.J.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.; Schaub, T. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can. Geotech. J. 2001, 38, 995–1024. [Google Scholar] [CrossRef]
- Chi, K.H.; Shin, J.S.; Park, N.W. Quantitative Analysis of GIS-based Landslide Prediction Models Using Prediction Rate Curve. Korean J. Remote Sens. 2001, 17, 199–210. [Google Scholar]
- Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840. [Google Scholar]
- Song, Y.S.; Chae, B.G. Development to Prediction Technique of Slope Hazards in Gneiss Area using Decision Tree Model. J. Eng. Geol. 2008, 18, 45–54. [Google Scholar]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 2014, 11, 1063–1078. [Google Scholar] [CrossRef]
- Yeon, Y.K.; Han, J.G.; Ryu, K.H. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng. Geol. 2010, 116, 274–283. [Google Scholar] [CrossRef]
- Peng, L.; Niu, R.Q.; Huang, B.; Wu, X.L.; Zhao, Y.N.; Ye, R.Q. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 2014, 204, 287–301. [Google Scholar] [CrossRef]
- Lee, S.; Song, K.Y.; Oh, H.J.; Choi, J. Detection of landslide using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis. Int. J. Remote Sens. 2012, 33, 4937–4966. [Google Scholar] [CrossRef]
- Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.K. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 2005, 97, 322–336. [Google Scholar] [CrossRef]
- Biggs, D.; Barry, D.V.; Suen, E. A method of choosing multi way partitions for classification and decision trees. J. Appl. Stat. 2006, 18, 49–62. [Google Scholar] [CrossRef]
- Alkhasawneh, M.S.; Ngah, U.K.; Tay, L.T.; Isa, M.; Ashidi, N.; Al-Batah, M.S. Modeling and testing landslide hazard using decision tree. J. Appl. Math. 2014. [Google Scholar] [CrossRef]
- Baker, S.; Cousins, R.D. Clarification of the use of chi-square and likelihood functions in fits to histograms. Nucl. Instrum. Methods Phys. Res. 1984, 221, 437–442. [Google Scholar] [CrossRef]
Category | Factors | Data Type | Scale | Source | |
---|---|---|---|---|---|
DEM | Topographic factors | Slope | Grid | 1:5000 | National Geographic Information Institute (NGII) |
Aspect | |||||
Maximum curvature | |||||
Profile curvature | |||||
Convexity | |||||
Texture | |||||
Surface area | |||||
Mid-slope position (MSP) | |||||
Terrain ruggedness index (TRI) | |||||
Topographic position index (TPI) | |||||
Hydrologic factors | Flow accumulation | ||||
Topographic wetness index (TWI) | |||||
Soil map | Land-cover Material | Polygon | 1:5000 | National Academy of Agricultural Science (NAAS) | |
Forest map | Forest type | Polygon | 1:5000 | Korea Forest Research Institute (KFRI) | |
Forest age | |||||
Forest density | |||||
Forest diameter | |||||
Geology | Lithology Distance from fault | Polygon | 1:25,000 | Korean Institute of Geoscience and Mineral Resources (KIGAM) |
Factor | Class | % Landslide (+) | % Domain (+) | FR Value |
---|---|---|---|---|
aspect | Flat | 13.44 | 10.82 | 1.24 |
North | 15.42 | 10.37 | 1.49 | |
NorthEast | 15.42 | 12.03 | 1.28 | |
East | 7.51 | 11.00 | 0.68 | |
SouthEast | 5.14 | 11.39 | 0.45 | |
South | 9.09 | 11.23 | 0.81 | |
SouthWest | 8.30 | 11.04 | 0.75 | |
West | 12.25 | 10.80 | 1.13 | |
NorthWest | 13.44 | 11.33 | 1.19 | |
convexity | 0–36.49 | 0.73 | 19.68 | 0.04 |
36.50–43.79 | 10.95 | 19.25 | 0.57 | |
43.80–48.66 | 20.44 | 19.72 | 1.04 | |
48.67–54.22 | 30.29 | 20.87 | 1.45 | |
54.23–88.64 | 37.59 | 20.48 | 1.84 | |
0.25–2.07 | 33.58 | 22.86 | 1.47 | |
2.08–4.11 | 22.99 | 21.54 | 1.07 | |
4.12–10.25 | 13.87 | 18.02 | 0.77 | |
10.26–521.90 | 10.22 | 17.44 | 0.59 | |
mid slope position | 0–0.21 | 29.56 | 19.74 | 1.50 |
0.43–0.61 | 20.80 | 19.36 | 1.07 | |
0.62–0.78 | 9.85 | 20.75 | 0.47 | |
0.79–1 | 14.60 | 20.33 | 0.72 | |
slope | 0–0.05 | 1.82 | 19.90 | 0.09 |
0.06–0.25 | 8.03 | 19.91 | 0.40 | |
0.39–0.52 | 28.10 | 19.80 | 1.42 | |
0.53–1.44 | 47.45 | 19.91 | 2.38 | |
surface area | 25 | 0.73 | 12.83 | 0.06 |
25.01–26.34 | 16.79 | 37.35 | 0.45 | |
26.35–27.68 | 17.52 | 19.50 | 0.90 | |
29.71–196.26 | 33.58 | 13.82 | 2.43 | |
texture | 0 | 0.36 | 13.90 | 0.03 |
0.01–0.43 | 9.12 | 34.28 | 0.27 | |
0.44–1.09 | 19.71 | 18.62 | 1.06 | |
1.10–2.41 | 32.48 | 18.15 | 1.79 | |
tpi | −30.86–5.64 | 12.41 | 19.12 | 0.65 |
−5.65–1.81 | 14.96 | 19.14 | 0.78 | |
−1.82–0.41 | 10.22 | 20.08 | 0.51 | |
0.42–5.84 | 30.29 | 20.97 | 1.44 | |
5.85–50.53 | 32.12 | 20.69 | 1.55 | |
5.19–5.53 | 8.03 | 21.03 | 0.38 | |
5.54–5.95 | 14.23 | 20.31 | 0.70 | |
5.96–7.15 | 29.93 | 20.05 | 1.49 | |
7.16–21.42 | 46.72 | 19.48 | 2.40 | |
twi | 0–0.17 | 44.89 | 19.04 | 2.36 |
0.89–1.32 | 18.98 | 20.94 | 0.91 | |
1.33–1.85 | 11.68 | 20.07 | 0.58 | |
1.86–22.47 | 0.36 | 18.80 | 0.02 | |
Lithology | Biotite granite | 100 | 83.91 | 1.19 |
Soil | Samgag Series | 95.24 | 67.04 | 2.33 |
Sangye Series | 0.36 | 0.59 | 0.62 | |
River | 0.36 | 2.08 | 0.18 | |
Yesan Series | 0.36 | 2.27 | 0.16 | |
Yecheon Series | 1.09 | 4.84 | 0.22 | |
Forest type | Pinus Koraiensis | 6.57 | 4.57 | 1.44 |
No data | 0.73 | 28.50 | 0.03 | |
Forest age | No data | 0.73 | 30.28 | 0.02 |
21–30 yr | 44.89 | 32.40 | 1.39 | |
31–40 yr | 20.80 | 18.07 | 1.15 | |
Forest diameter | less than 6 cm | 1.08 | 30.28 | 0.04 |
18–29 cm | 67.80 | 46.91 | 1.45 | |
over than 30 cm | 21.42 | 18.21 | 1.18 | |
Forest density | No data | 8.39 | 34.87 | 0.24 |
Medium | 2.19 | 2.06 | 1.07 | |
Land cover | Farm | 0.36 | 16.73 | 0.02 |
Grassland | 16.06 | 5.22 | 3.08 | |
6221.08–8575 | 10.58 | 20.31 | 0.52 | |
flat | 16.06 | 31.28 | 0.51 | |
convex | 51.82 | 38.08 | 1.36 | |
SgE3 | 1.82 | 2.70 | 0.68 | |
Forest type | PK | 6.57 | 4.57 | 1.44 |
D | 74.45 | 46.72 | 1.59 | |
PL | 5.47 | 0.74 | 7.36 | |
99 | 0.73 | 28.50 | 0.03 | |
PD | 1.09 | 0.21 | 5.22 | |
M | 11.68 | 9.81 | 1.19 | |
Forest age | 0 | 0.73 | 30.28 | 0.02 |
1 | 7.66 | 4.59 | 1.67 | |
2 | 25.91 | 14.51 | 1.79 | |
3 | 44.89 | 32.40 | 1.39 | |
4 | 20.80 | 18.07 | 1.15 | |
Forest diameter | 0 | 1.08 | 30.28 | 0.04 |
1 | 9.71 | 4.59 | 2.12 | |
2 | 67.80 | 46.91 | 1.45 | |
3 | 21.42 | 18.21 | 1.18 | |
Forest density | 0 | 8.39 | 34.87 | 0.24 |
C | 89.42 | 61.96 | 1.44 | |
B | 2.19 | 2.06 | 1.07 | |
Land cover | 200 | 0.36 | 16.73 | 0.02 |
300 | 83.58 | 67.73 | 1.23 | |
400 | 16.06 | 5.22 | 3.08 | |
Distance from Fault | 1 | 3.28 | 19.57 | 0.17 |
2 | 30.29 | 19.80 | 1.53 | |
3 | 41.61 | 20.15 | 2.07 | |
4 | 14.23 | 20.18 | 0.71 | |
5 | 10.58 | 20.31 | 0.52 | |
maximum curvature | concave | 18.61 | 30.25 | 0.62 |
flat | 32.48 | 37.03 | 0.88 | |
convex | 48.91 | 32.72 | 1.49 | |
profile curvature | concave | 32.12 | 30.64 | 1.05 |
flat | 16.06 | 31.28 | 0.51 | |
convex | 51.82 | 38.08 | 1.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-J.; Lee, C.-W.; Lee, S.; Lee, M.-J. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sens. 2018, 10, 1545. https://doi.org/10.3390/rs10101545
Park S-J, Lee C-W, Lee S, Lee M-J. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sensing. 2018; 10(10):1545. https://doi.org/10.3390/rs10101545
Chicago/Turabian StylePark, Sung-Jae, Chang-Wook Lee, Saro Lee, and Moung-Jin Lee. 2018. "Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea" Remote Sensing 10, no. 10: 1545. https://doi.org/10.3390/rs10101545
APA StylePark, S. -J., Lee, C. -W., Lee, S., & Lee, M. -J. (2018). Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sensing, 10(10), 1545. https://doi.org/10.3390/rs10101545