Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Social Clicks: What and Who Gets Read on Twitter?

Published: 14 June 2016 Publication History

Abstract

Online news domains increasingly rely on social media to drive traffic to their websites. Yet we know surprisingly little about how a social media conversation mentioning an online article actually generates clicks. Sharing behaviors, in contrast, have been fully or partially available and scrutinized over the years. While this has led to multiple assumptions on the diffusion of information, each assumption was designed or validated while ignoring actual clicks. We present a large scale, unbiased study of social clicks---that is also the first data of its kind---gathering a month of web visits to online resources that are located in 5 leading news domains and that are mentioned in the third largest social media by web referral (Twitter). Our dataset amounts to 2.8 million shares, together responsible for 75 billion potential views on this social media, and 9.6 million actual clicks to 59,088 unique resources. We design a reproducible methodology and carefully correct its biases. As we prove, properties of clicks impact multiple aspects of information diffusion, all previously unknown:(i) Secondary resources, that are not promoted through headlines and are responsible for the long tail of content popularity, generate more clicks both in absolute and relative terms; (ii) Social media attention is actually long-lived, in contrast with temporal evolution estimated from shares or receptions; (iii) The actual influence of an intermediary or a resource is poorly predicted by their share count, but we show how that prediction can be made more precise.

References

[1]
A. Abisheva, V. R. K. Garimella, D. Garcia, and I. Weber. Who watches (and shares) what on YouTube? And when?: Using Twitter to understand YouTube viewership. In Proc. of ACM WSDM'14. New York, NY, USA, Feb. 2014.
[2]
L. A. Adamic and N. Glance. The political blogosphere and the 2004 U.S. election: divided they blog. In Proc. of ACM SIGKDD LinkKDD'05. Chicago, IL, USA, Aug. 2005.
[3]
E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone's an influencer: quantifying influence on Twitter. In Proc. of ACM WSDM'11. Hong Kong, PRC, Feb. 2011.
[4]
M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring user influence in Twitter: The million follower fallacy. In Proc. of AAAI ICWSM'10, Washington, DC, USA, May 2010.
[5]
M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM TON, 17(5):1357--1370, 2009.
[6]
R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a social system. In PNAS, 105(41):15649--15653, Oct. 2008.
[7]
M. H. Degroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118--121, Mar. 1974.
[8]
M. Gabielkov, A. Rao, and A. Legout. Studying social networks at scale: macroscopic anatomy of the Twitter social graph. In Proc. of ACM SIGMETRICS'14, Austin, TX, USA, Jun. 2014.
[9]
S. Goel, A. Broder, E. Gabrilovich, and B. Pang. Anatomy of the long tail: ordinary people with extraordinary tastes. In Proc. of ACM WSDM'10, New York, NY, USA, Feb. 2010.
[10]
M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. ACM TKDD, 5(4), Feb. 2012.
[11]
N. Hegde, L. Massoulié, and L. Viennot. Self-organizing flows in social networks. In Proc. of SIROCCO'13, pages 116--128, Ischia, Italy, Jul. 2013.
[12]
E. Katz. The two-step flow of communication: An up-to-date report on an hypothesis. Public Opinion Quarterly, 21(1):61, 1957.
[13]
D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In Proc. of ACM SIGKDD KDD'03, Washington, DC, USA, Aug. 2003.
[14]
J. M. Kleinberg. Cascading behavior in networks: Algorithmic and economic issues. Algorithmic game theory, Cambridge University Press, 2007.
[15]
M. Lelarge. Efficient control of epidemics over random networks. In Proc. of ACM SIGMETRICS'09, Seattle, WA, USA, June 2009.
[16]
M. Lelarge. Diffusion and cascading behavior in random networks. Games and Economic Behavior, 75(2):752--775, Jul. 2012.
[17]
D. Liben-Nowell and J. M. Kleinberg. Tracing information flow on a global scale using Internet chain-letter data. In PNAS, 105(12):4633, 2008.
[18]
C. G. Lord, L. Ross, and M. R. Lepper. Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11):2098, Nov. 1979.
[19]
L. Massoulié, M. I. Ohannessian, and A. Proutiere. Greedy-Bayes for targeted news dissemination. In Proc. of ACM SIGMETRICS'15. Portland, OR, USA, Jun. 2015.
[20]
A. May, A. Chaintreau, N. Korula, and S. Lattanzi. Filter & Follow: How social media foster content curation. In Proc. of ACM SIGMETRICS'14, Austin, TX, USA, Jun. 2014.
[21]
H. B. McMahan, G. Holt, D. Sculley, M. Young, and D. Ebner. Ad click prediction: a view from the trenches. In Proc. of ACM SIGKDD KDD'13, Chicago, IL, USA, Aug. 2013.
[22]
A. Mitchell, J. Gottfried, J. Kiley, and K. E. Matsa. Political polarization & media habits. Technical report, Pew Research Center, Oct. 2014, http://pewrsr.ch/1vZ9MnM.
[23]
J. Ok, Y. Jin, J. Shin, and Y. Yi. On maximizing diffusion speed in social networks. In Proc. of ACM SIGMETRICS'14, Austin, TX, USA, Jun. 2014.
[24]
P. Pinto, P. Thiran, and M. Vetterli. Locating the source of diffusion in large-scale networks. Physical review letters, 109(6):068702, Aug. 2012.
[25]
G. Szabo and B. A. Huberman. Predicting the popularity of online content. Communications of the ACM, 53(8), Aug. 2010.
[26]
L. Wang, A. Ramachandran and A. Chaintreau. Measuring click and share dynamics on social media: a reproducible and validated approach. In. Proc. of AAAI ICWSM NECO'16, Cologne, Germany, May 2016.
[27]
F. M. F. Wong, Z. Liu, and M. Chiang. On the efficiency of social recommender networks. In. Proc. of IEEE INFOCOM'15, Hong Kong, PRC, Apr. 2015.
[28]
F. Wu and B. A. Huberman. Novelty and collective attention. In PNAS, 104(45):17599--17601, Nov. 2007.
[29]
S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who says what to whom on Twitter. In Proc. of WWW'11. Hyderabad, India, Mar. 2011.
[30]
J. Xu, R. Wu, K. Zhu, B. Hajek, R. Srikant, and L. Ying. Jointly clustering rows and columns of binary matrices. In Proc. of ACM SIGMETRICS'14, Austin, TX, USA, Jun. 2014.
[31]
J. Yang and J. Leskovec. Patterns of temporal variation in online media. In Proc. of ACM WSDM'11. Hong Kong, PRC, Feb. 2011.
[32]
R. B. Zadeh, A. Goel, K. Munagala, and A. Sharma. On the precision of social and information networks. In Proc. of ACM COSN'13. Boston, MA, USA, Oct. 2013.

Cited By

View all
  • (2024)Big techs, algoritmos de redes sociais e decorrentes impactos para a performatividade linguísticaRevista Linguagem em Foco10.46230/2674-8266-15-1210715:3(97-114)Online publication date: 14-May-2024
  • (2024)Czy adwersarze uczą się na własnych błędach? Ewolucja nagłówków fake newsPolskie szkoły lingwistyki stosowanej. Jubileusz 50-lecia Instytutu Lingwistyki Stosowanej Uniwersytetu Warszawskiego10.31338/uw.9788323562542.pp.95-118Online publication date: 2024
  • (2024)Descriptions of Scientific Evidence and Uncertainty of Unproven COVID-19 Therapies in US News: Content Analysis StudyJMIR Infodemiology10.2196/513284(e51328)Online publication date: 29-Aug-2024
  • Show More Cited By

Index Terms

  1. Social Clicks: What and Who Gets Read on Twitter?

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM SIGMETRICS Performance Evaluation Review
    ACM SIGMETRICS Performance Evaluation Review  Volume 44, Issue 1
    Performance evaluation review
    June 2016
    409 pages
    ISSN:0163-5999
    DOI:10.1145/2964791
    Issue’s Table of Contents
    • cover image ACM Conferences
      SIGMETRICS '16: Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science
      June 2016
      434 pages
      ISBN:9781450342667
      DOI:10.1145/2896377
    Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 June 2016
    Published in SIGMETRICS Volume 44, Issue 1

    Check for updates

    Author Tags

    1. news media
    2. social clicks
    3. social networks
    4. twitter

    Qualifiers

    • Research-article

    Funding Sources

    • National Science Foundation

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)190
    • Downloads (Last 6 weeks)27
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Big techs, algoritmos de redes sociais e decorrentes impactos para a performatividade linguísticaRevista Linguagem em Foco10.46230/2674-8266-15-1210715:3(97-114)Online publication date: 14-May-2024
    • (2024)Czy adwersarze uczą się na własnych błędach? Ewolucja nagłówków fake newsPolskie szkoły lingwistyki stosowanej. Jubileusz 50-lecia Instytutu Lingwistyki Stosowanej Uniwersytetu Warszawskiego10.31338/uw.9788323562542.pp.95-118Online publication date: 2024
    • (2024)Descriptions of Scientific Evidence and Uncertainty of Unproven COVID-19 Therapies in US News: Content Analysis StudyJMIR Infodemiology10.2196/513284(e51328)Online publication date: 29-Aug-2024
    • (2024)The end of ‘mini-brains’! Responsible communication of brain organoid researchMolecular Psychology: Brain, Behavior, and Society10.12688/molpsychol.17534.22(13)Online publication date: 29-Jan-2024
    • (2024)The Silencing of Rape Victims in Readers’ Comments on Serbian News WebsitesJournalism & Mass Communication Quarterly10.1177/10776990241253805Online publication date: 21-Jun-2024
    • (2024)Fooling Them, Not Me? How Fake News Affects Evaluators’ Reputation Judgments and Behavioral IntentionsBusiness & Society10.1177/00076503241271255Online publication date: 11-Sep-2024
    • (2024)Why is immigration important to you? A revisit to public issue salience and elite cuesEuropean Journal of Political Research10.1111/1475-6765.12708Online publication date: 14-Jul-2024
    • (2024)Misinformation as a Security Threat: Recognition of Misinformation in Student Population2024 47th MIPRO ICT and Electronics Convention (MIPRO)10.1109/MIPRO60963.2024.10569444(358-363)Online publication date: 20-May-2024
    • (2024)Understanding the decline: a procedural justice approach to the key factors behind the downward shift in opinions of policeCriminal Justice Studies10.1080/1478601X.2024.232995537:2(147-170)Online publication date: 28-Mar-2024
    • (2024)How News Coverage of Misinformation Shapes Perceptions and Trust10.1017/9781009488815Online publication date: 28-May-2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media