Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs

Published: 07 June 2019 Publication History

Abstract

Recently, hardness results for problems in P were achieved using reasonable complexity-theoretic assumptions such as the Strong Exponential Time Hypothesis. According to these assumptions, many graph-theoretic problems do not admit truly subquadratic algorithms. A central technique used to tackle the difficulty of the above-mentioned problems is fixed-parameter algorithms with polynomial dependency in the fixed parameter (P-FPT). Applying this technique to clique-width, an important graph parameter, remained to be done.
In this article, we study several graph-theoretic problems for which hardness results exist such as cycle problems, distance problems, and maximum matching. We give hardness results and P-FPT algorithms, using clique-width and some of its upper bounds as parameters. We believe that our most important result is an algorithm in O(k4n + m)-time for computing a maximum matching, where k is either the modular-width of the graph or the P4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs. Our algorithms are based on preprocessing methods using modular decomposition and split decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width.

References

[1]
Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’15). SIAM, Philadelphia, PA, 1681--1697.
[2]
Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply strong lower bounds for dynamic problems. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’14). IEEE, 434--443.
[3]
Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. 2016. Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’16). SIAM, 377--391.
[4]
Martin Aigner and Michael Fromme. 1984. A game of cops and robbers. Discr. Appl. Math. 8, 1 (1984), 1--12.
[5]
Luitpold Babel. 1998. Tree-like P<sub>4</sub>-connected graphs. Discr. Math. 191, 1--3 (1998), 13--23.
[6]
Luitpold Babel. 2000. Recognition and isomorphism of tree-like P<sub>4</sub>-connected graphs. Discr. Appl. Math. 99, 1 (2000), 295--315.
[7]
Luitpold Babel and Stephan Olariu. 1998. On the structure of graphs with few P<sub>4</sub>’s. Discr. Appl. Math. 84, 1--3 (1998), 1--13.
[8]
Luitpold Babel and Stephan Olariu. 1999. On the p-connectedness of graphs—A survey. Discr. Appl. Math. 95, 1--3 (1999), 11--33.
[9]
Hans-Jürgen Bandelt and Henry Martyn Mulder. 1986. Distance-hereditary graphs. J. Combin. Theor. B 41, 2 (1986), 182--208.
[10]
Stefan Baumann. 1996. A Linear Algorithm for the Homogeneous Decomposition of Graphs. Technical Report M-9615. Zentrum Mathematik, Technische Universität München. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi&equals;10.1.1.37.7643.
[11]
Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. 2017. Parameterized aspects of triangle enumeration. In Proceedings of the International Symposium on Fundamentals of Computation Theory (FCT’17), Lecture Notes in Computer Science, Vol. 10472. Springer, 96--110.
[12]
Claude Berge. 1957. Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43, 9 (1957), 842--844.
[13]
Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1 (1998), 1--45.
[14]
Hans L. Bodlaender. 2006. Treewidth: Characterizations, applications, and computations. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG’06), Lecture Notes in Computer Science, Vol. 4271. Springer, 1--14.
[15]
Hans L. Bodlaender and Arie M. C. A. Koster. 2006. Safe separators for treewidth. Discr. Math. 306, 3 (2006), 337--350.
[16]
John Adrian Bondy and Uppaluri Siva Ramachandra Murty. 2008. Graph Theory. Graduate Texts in Mathematics, Vol. 244. Springer-Verlag, London.
[17]
Michele Borassi, David Coudert, Pierluigi Crescenzi, and Andrea Marino. 2015. On computing the hyperbolicity of real-world graphs. In Proceedings of the European Symposia on Algorithms (ESA’15). Lecture Notes in Computer Science, Vol. 9294. Springer, 215--226.
[18]
Michele Borassi, Pierluigi Crescenzi, and Michel Habib. 2016. Into the square: On the complexity of some quadratic-time solvable problems. Electr. Not. Theor. Comput. Sci. 322 (2016), 51--67.
[19]
Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 2 (2001), 163--177.
[20]
Gunnar Brinkmann, Jack H. Koolen, and Vincent Moulton. 2001. On the hyperbolicity of chordal graphs. Ann. Combin. 5, 1 (2001), 61--69.
[21]
Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. 2011. Boolean-width of graphs. Theor. Comput. Sci. 412, 39 (2011), 5187--5204.
[22]
Pierre Charbit, Fabien De Montgolfier, and Mathieu Raffinot. 2012. Linear time split decomposition revisited. SIAM J. Discr. Math. 26, 2 (2012), 499--514.
[23]
Nathann Cohen, David Coudert, Guillaume Ducoffe, and Aurélien Lancin. 2017. Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comput. Sci. 690 (2017), 114--139.
[24]
Nathann Cohen, David Coudert, and Aurélien Lancin. 2015. On computing the Gromov hyperbolicity. J. Exp. Algor. 20 (2015), 1--6.
[25]
Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. 2000. Polynomial time recognition of clique-width ≤3 graphs. In Proceedings of the Latin American Theoretical INformatics Symposium (LATIN’00), Lecture Notes in Computer Science, Vol. 1776. Springer, 126--134.
[26]
Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. 1985. A linear recognition algorithm for cographs. SIAM J. Comput. 14, 4 (1985), 926--934.
[27]
Derek G. Corneil and Udi Rotics. 2005. On the relationship between clique-width and treewidth. SIAM J. Comput. 34, 4 (2005), 825--847.
[28]
David Coudert and Guillaume Ducoffe. 2014. Recognition of C<sub>4</sub>-free and 1/2-hyperbolic graphs. SIAM J. Discr. Math. 28, 3 (2014), 1601--1617.
[29]
David Coudert, Guillaume Ducoffe, and Alexandru Popa. 2018. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’18). SIAM, 2765--2784.
[30]
Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 1 (1990), 12--75.
[31]
Bruno Courcelle. 2012. On the model-checking of monadic second-order formulas with edge set quantifications. Discr. Appl. Math. 160, 6 (2012), 866--887.
[32]
Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. 1993. Handle-rewriting hypergraph grammars. J. Comput. System Sci. 46, 2 (1993), 218--270.
[33]
Bruno Courcelle, Pinar Heggernes, Daniel Meister, Charis Papadopoulos, and Udi Rotics. 2015. A characterisation of clique-width through nested partitions. Discr. Appl. Math. 187 (2015), 70--81.
[34]
Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 2 (2000), 125--150.
[35]
Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique width of graphs. Discr. Appl. Math. 101, 1 (2000), 77--114.
[36]
William H. Cunningham. 1982. Decomposition of directed graphs. SIAM J. Algebr. Discr. Methods 3, 2 (1982), 214--228.
[37]
Reinhard Diestel. 2010. Graph Theory, 4th ed. Springer.
[38]
Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer Science 8 Business Media.
[39]
Feodor F. Dragan. 1997. On greedy matching ordering and greedy matchable graphs. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG’97), Lecture Notes in Computer Science, Vol. 1335. Springer, 184--198.
[40]
Feodor F. Dragan and Falk Nicolai. 2000. LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem. Discr. Appl. Math. 98, 3 (2000), 191--207.
[41]
Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight matching. J. ACM 61, 1 (2014), 1.
[42]
Guillaume Ducoffe. 2016. Metric Properties of Large Graphs. Ph.D. Dissertation. Université Côte d’Azur. https://tel.archives-ouvertes.fr/tel-01485328
[43]
Guillaume Ducoffe and Alexandru Popa. 2018. The b-matching problem in distance-hereditary graphs and beyond. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC’18), Leibniz International Proceedings in Informatics, Vol. 123. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 30:1--30:13.
[44]
Guillaume Ducoffe and Alexandru Popa. 2018. The use of a pruned modular decomposition for maximum matching algorithms on some graph classes. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC’18), Leibniz International Proceedings in Informatics, Vol. 123. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 6:1--6:13.
[45]
Jack Edmonds. 1965. Paths, trees, and flowers. Can. J. Math. 17, 3 (1965), 449--467.
[46]
Wolfgang Espelage, Frank Gurski, and Egon Wanke. 2001. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG’01), Lecture Notes in Computer Science, Vol. 1. Springer, 117--128.
[47]
Jacob Evald and Søren Dahlgaard. 2016. Tight hardness results for distance and centrality problems in constant degree graphs. CoRR abs/1609.08403 (2016). arxiv:1609.08403 http://arxiv.org/abs/1609.08403
[48]
Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. 2009. Clique-width is NP-complete. SIAM J. Discr. Math. 23, 2 (2009), 909--939.
[49]
Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Niedermeier, and Nimrod Talmon. 2017. When can graph hyperbolicity be computed in linear time? In Proceedings of the Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 10389. Springer, 397--408.
[50]
Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. 2010. Intractability of clique-width parameterizations. SIAM J. Comput. 39, 5 (2010), 1941--1956.
[51]
Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. 2014. Almost optimal lower bounds for problems parameterized by clique-width. SIAM J. Comput. 43, 5 (2014), 1541--1563.
[52]
Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2019. Clique-width III: Hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algor. 15, 1 (2019), 9.
[53]
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna. 2018. Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Trans. Algor. 14, 3 (2018), 34:1--34:45.
[54]
Jean-Luc Fouquet, Vassilis Giakoumakis, and Jean-Marie Vanherpe. 1999. Bipartite graphs totally decomposable by canonical decomposition. Int. J. Found. Comput. Sci. 10, 4 (1999), 513--533.
[55]
Jean-Luc Fouquet, Igor Parfenoff, and Henri Thuillier. 1997. An O(n)-time algorithm for maximum matching in P<sub>4</sub>-tidy graphs. Inf. Process. Lett. 62, 6 (1997), 281--287.
[56]
Hervé Fournier, Anas Ismail, and Antoine Vigneron. 2015. Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett. 115, 6 (2015), 576--579.
[57]
Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35--41.
[58]
Harold N. Gabow. 1983. An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In Proceedings of the ACM Symposium on the Theory of Computing (STOC’83). ACM, 448--456.
[59]
Harold N. Gabow and Robert Endre Tarjan. 1983. A linear-time algorithm for a special case of disjoint set union. In Proceedings of the ACM Symposium on the Theory of Computing (STOC’83). ACM, 246--251.
[60]
Jakub Gajarskỳ, Michael Lampis, and Sebastian Ordyniak. 2013. Parameterized algorithms for modular-width. In Proceedings of the International Symposium on Parameterized and Exact Computation (IPEC’13), Lecture Notes in Computer Science, Vol. 8246. Springer, 163--176.
[61]
Anka Gajentaan and Mark H. Overmars. 1995. On a class of O(n<sup>2</sup>) problems in computational geometry. Comput. Geom. 5, 3 (1995), 165--185.
[62]
Tibor Gallai. 1967. Transitiv orientierbare graphen. Acta Math. Hung. 18, 1 (1967), 25--66.
[63]
Robert Ganian. 2010. Thread graphs, linear rank-width and their algorithmic applications. In Proceedings of the International Workshop on Combinatorial Algorithms (IWOCA’10), Lecture Notes in Computer Science, Vol. 6460. Springer, 38--42.
[64]
Cyril Gavoille and Christophe Paul. 2003. Distance labeling scheme and split decomposition. Discr. Math. 273, 1 (2003), 115--130.
[65]
Vassilis Giakoumakis, Florian Roussel, and Henri Thuillier. 1997. On P<sub>4</sub>-tidy graphs. Discr. Math. Theor. Comput. Sci. 1, 1 (1997), 17--41. http://dmtcs.episciences.org/232
[66]
Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. 2017. Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs. Theor. Comput. Sci. 689 (2017), 67--95.
[67]
Emeric Gioan and Christophe Paul. 2012. Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs. Discr. Appl. Math. 160, 6 (2012), 708--733.
[68]
Martin Charles Golumbic and Udi Rotics. 2000. On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11, 3 (2000), 423--443.
[69]
Mikhaïl Gromov. 1987. Hyperbolic groups. In Essays in Group Theory. Springer, 75--263.
[70]
Frank Gurski and Egon Wanke. 2000. The tree-width of clique-width bounded graphs without K<sub>n</sub>, n. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG’00), Lecture Notes in Computer Science, Vol. 1928. Springer, 196--205.
[71]
Michel Habib and Christophe Paul. 2010. A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4, 1 (2010), 41--59.
[72]
Edward Howorka. 1979. On metric properties of certain clique graphs. J. Combin. Theor. B 27, 1 (1979), 67--74.
[73]
Thore Husfeldt. 2016. Computing graph distances parameterized by treewidth and diameter. In Proceedings of the International Symposium on Parameterized and Exact Computation (IPEC’16), Leibniz International Proceedings in Informatics, Vol. 63. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 16:1--16:11.
[74]
Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 1998. Which problems have strongly exponential complexity? In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’98). IEEE, 653--663.
[75]
Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. 2018. On the power of tree-depth for fully polynomial FPT algorithms. In Proceedings of the International Symposium on Theoretical Aspects of Computer Science (STACS’18), Leibniz International Proceedings in Informatics, Vol. 96. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 41:1--41:14.
[76]
Beverly Jamison and Stephan Olariu. 1995. P-components and the homogeneous decomposition of graphs. SIAM J. Discr. Math. 8, 3 (1995), 448--463.
[77]
Camille Jordan. 1869. Sur les assemblages de lignes. J. Reine Ang. Math. 1869, 70 (1869), 185--190.
[78]
Richard M. Karp and Michael Sipser. 1981. Maximum matching in sparse random graphs. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’81). IEEE, 364--375.
[79]
Dieter Kratsch and Jeremy P. Spinrad. 2006. Between O(nm) and O(n<sup>a</sup>). SIAM J. Comput. 36, 2 (2006), 310--325.
[80]
Stefan Kratsch and Florian Nelles. 2018. Efficient and adaptive parameterized algorithms on modular decompositions. In Proceedings of the European Symposia on Algorithms (ESA’18). 55:1--55:15.
[81]
Michael Lampis. 2012. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 1 (2012), 19--37.
[82]
Jean-Marc Lanlignel. 2001. Autour de la décomposition en coupes. Ph.D. Dissertation. Université Montpellier 2.
[83]
Johann A. Makowsky and Udi Rotics. 1999. On the clique-width of graphs with few P<sub>4</sub>’s. Int. J. Found. Comput. Sci. 10, 03 (1999), 329--348.
[84]
George B. Mertzios, André Nichterlein, and Rolf Niedermeier. 2017. The power of linear-time data reduction for maximum matching. In Proceedings of the International Symposium on Mathematical Foundations of Computer Science (MFCS’17), Leibniz International Proceedings in Informatics, Vol. 83. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 46:1--46:14.
[85]
Silvio Micali and Vijay V. Vazirani. 1980. An O(&radic;VE) algorithm for finding maximum matching in general graphs. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’80). IEEE, 17--27.
[86]
Mark B. Novick. 1989. Fast Parallel Algorithms for the Modular Decomposition. Technical Report TR89-1016. Cornell University. https://hdl.handle.net/1813/6816.
[87]
Stephan Olariu. 1989. Weak bipolarizable graphs. Discr. Math. 74, 1--2 (1989), 159--171.
[88]
Sang-il Oum and Paul D. Seymour. 2006. Approximating clique-width and branch-width. J. Combin. Theor. B 96, 4 (2006), 514--528.
[89]
Rami Puzis, Yuval Elovici, Polina Zilberman, Shlomi Dolev, and Ulrik Brandes. 2015. Topology manipulations for speeding betweenness centrality computation. J. Complex Netw. 3, 1 (Mar. 2015), 84--112.
[90]
Yuri Rabinovich, Jan Arne Telle, and Martin Vatshelle. 2013. Upper bounds on boolean-width with applications to exact algorithms. In Proceedings of the International Symposium on Parameterized and Exact Computation (IPEC’13), Lecture Notes in Computer Science, Vol. 8246. Springer, 308--320.
[91]
Michaël Rao. 2008. Clique-width of graphs defined by one-vertex extensions. Discr. Math. 308, 24 (2008), 6157--6165.
[92]
Michaël Rao. 2008. Solving some NP-complete problems using split decomposition. Discr. Appl. Math. 156, 14 (2008), 2768--2780.
[93]
Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. J. Algor. 7, 3 (1986), 309--322.
[94]
Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proceedings of the ACM Symposium on the Theory of Computing (STOC’13). ACM, 515--524.
[95]
Petra Scheffler. 1990. A linear algorithm for the pathwidth of trees. In Topics in Combinatorics and Graph Theory. Springer, 613--620.
[96]
Mauricio Soto Gómez. 2011. Quelques propriétés topologiques des graphes et applications à internet et aux réseaux. Ph.D. Dissertation. Univ. Paris Diderot (Paris 7). Retrieved from http://www.dim.uchile.cl/ mausoto/memoires/these.pdf.
[97]
David P. Sumner. 1973. Graphs indecomposable with respect to the X-join. Discr. Math. 6, 3 (1973), 281--298.
[98]
Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. 2008. Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’08), Lecture Notes in Computer Science, Vol. 5125. Springer, 634--645.
[99]
Virginia Vassilevska Williams. 2015. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time hypothesis (Invited talk). In Proceedings of the International Symposium on Parameterized and Exact Computation (IPEC’15), Leibniz International Proceedings in Informatics, Vol. 43. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 16--28.
[100]
Virginia Vassilevska Williams and R. Ryan Williams. 2010. Subcubic equivalences between path, matrix and triangle problems. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’10). IEEE, 645--654.
[101]
Ming-Shing Yu and Cheng-Hsing Yang. 1993. An O(n)-time algorithm for maximum matching on cographs. Inf. Process. Lett. 47, 2 (1993), 89--93.

Cited By

View all
  • (2024)Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic RankwidthProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649732(1538-1549)Online publication date: 10-Jun-2024
  • (2024)A Fixed-Parameter Algorithm for Dominance Drawings of DAGsTheoretical Computer Science10.1016/j.tcs.2024.114819(114819)Online publication date: Sep-2024
  • (2024)Parameterized complexity for iterated type partitions and modular-widthDiscrete Applied Mathematics10.1016/j.dam.2024.03.009350:C(100-122)Online publication date: 15-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 15, Issue 3
July 2019
392 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/3331056
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 June 2019
Accepted: 01 January 2019
Revised: 01 January 2019
Received: 01 April 2018
Published in TALG Volume 15, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hardness in P
  2. clique-width
  3. fully polynomial FPT
  4. modular decomposition
  5. neighbourhood diversity
  6. primeval decomposition
  7. split decomposition

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)30
  • Downloads (Last 6 weeks)3
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic RankwidthProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649732(1538-1549)Online publication date: 10-Jun-2024
  • (2024)A Fixed-Parameter Algorithm for Dominance Drawings of DAGsTheoretical Computer Science10.1016/j.tcs.2024.114819(114819)Online publication date: Sep-2024
  • (2024)Parameterized complexity for iterated type partitions and modular-widthDiscrete Applied Mathematics10.1016/j.dam.2024.03.009350:C(100-122)Online publication date: 15-Jun-2024
  • (2024)Parameterized Complexity of Streaming Diameter and Connectivity ProblemsAlgorithmica10.1007/s00453-024-01246-z86:9(2885-2928)Online publication date: 1-Sep-2024
  • (2024)$$\alpha _i$$-Metric Graphs: Radius, Diameter and all EccentricitiesAlgorithmica10.1007/s00453-024-01223-686:7(2092-2129)Online publication date: 25-Mar-2024
  • (2024)b-Coloring Parameterized by Clique-WidthTheory of Computing Systems10.1007/s00224-023-10132-068:4(1049-1081)Online publication date: 1-Aug-2024
  • (2023)Colouring a dominating set without conflicts: q-subset square colouringTheoretical Computer Science10.1016/j.tcs.2023.114160(114160)Online publication date: Aug-2023
  • (2023)Distance problems within Helly graphs and k-Helly graphsTheoretical Computer Science10.1016/j.tcs.2023.113690946(113690)Online publication date: Feb-2023
  • (2023)Computing maximum matchings in temporal graphsJournal of Computer and System Sciences10.1016/j.jcss.2023.04.005137(1-19)Online publication date: Nov-2023
  • (2023)Efficient parameterized algorithms for computing all-pairs shortest pathsDiscrete Applied Mathematics10.1016/j.dam.2023.07.029341:C(102-119)Online publication date: 31-Dec-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media