Abstract
Listing all triangles in an undirected graph is a fundamental graph primitive with numerous applications. It is trivially solvable in time cubic in the number of vertices. It has seen a significant body of work contributing to both theoretical aspects (e.g., lower and upper bounds on running time, adaption to new computational models) as well as practical aspects (e.g. algorithms tuned for large graphs). Motivated by the fact that the worst-case running time is cubic, we perform a systematic parameterized complexity study of triangle enumeration, providing both positive results (new enumerative kernelizations, “subcubic” parameterized solving algorithms) as well as negative results (uselessness in terms of possibility of “faster” parameterized algorithms of certain parameters such as diameter).
A full version is available at https://arxiv.org/abs/1702.06548.
T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13-2).
A. Nichterlein—Supported by a postdoc fellowship of the DAAD while at Durham University, UK.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\omega \) is a placeholder for the best known \(n\times n\)-matrix multiplication exponent.
- 2.
Degeneracy measures graph sparseness. A graph G has degeneracy d if every subgraph contains a vertex of degree at most d; thus G contains at most \(n\cdot d\) edges.
- 3.
The 3SUM problem asks whether a given set S of n integers contains three integers \(a, b, c \in S\) summing up to 0. The 3SUM-conjecture states that for any constant \(\varepsilon > 0\) there is no \(O(n^{2-\varepsilon })\)-time algorithm solving 3SUM. The connection between 3SUM and listing/detecting triangles is well studied [24, 29].
References
Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In: Proceedings of the 55th FOCS, pp. 434–443. IEEE Computer Society (2014)
Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the 27th SODA, pp. 377–391. SIAM (2016)
Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)
Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceedings of the 14th ACM KDD, pp. 16–24. ACM (2008)
Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 223–234. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7_19
Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time LexBFS cograph recognition algorithm. SIAM J. Discret. Math. 22(4), 1277–1296 (2008)
Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)
Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)
Creignou, N., Meier, A., Müller, J.S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. Theory Comput. Syst. 60(4), 737–758 (2017)
Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_32
Ferrara, E.: Measurement and analysis of online social networks systems. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 891–893. Springer, New York (2014). doi:10.1007/978-1-4614-6170-8_242
Fluschnik, T., Komusiewicz, C., Mertzios, G.B., Nichterlein, A., Niedermeier, R., Talmon, N.: When can graph hyperbolicity be computed in linear time? In: Ellen F., Kolokolova A., Sack J.R. (eds.) Proceedings of the 15th WADS. LNCS, vol. 10389, pp. 397–408. Springer, Heidelberg (2017). doi:10.1007/978-3-319-62127-2_34. ISBN 978-3-319-62126-5
Fomin, F.V., Lokshtanov, D., Pilipczuk, M., Saurabh, S., Wrochna, M.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. In: Proceedings of the 28th SODA, pp. 1419–1432. SIAM (2017)
Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. In: Proceedings of the 10th IPEC, LIPIcs, vol. 43, pp. 102–113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
Grabow, C., Grosskinsky, S., Kurths, J., Timme, M.: Collective relaxation dynamics of small-world networks. Phys. Rev. E 91, 052815 (2015)
Green, O., Bader, D.A.: Faster clustering coefficient using vertex covers. In: Proceedings of the 6th SocialCom, pp. 321–330. IEEE Computer Society (2013)
Habib, M., Paul, C., Viennoti, L.: A synthesis on partition refinement: a useful routine for strings, graphs, boolean matrices and automata. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 25–38. Springer, Heidelberg (1998). doi:10.1007/BFb0028546
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)
Khamis, M.A., Ngo, H.Q., Ré, C., Rudra, A.: Joins via geometric resolutions: worst case and beyond. ACM Trans. Database Syst. 41(4), 22:1–22:45 (2016)
Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 470–481. Springer, Cham (2015). doi:10.1007/978-3-319-21840-3_39
Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjecture. In: Proceedings of the 27th SODA, pp. 1272–1287. SIAM (2016)
Lagraa, S., Seba, H.: An efficient exact algorithm for triangle listing in large graphs. Data Min. Knowl. Disc. 30(5), 1350–1369 (2016)
Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Comput. Sci. 407(1–3), 458–473 (2008)
Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle detection and associativity testing. Algorithmica 77(2), 459–486 (2017)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time datareduction for maximum matching. In: Proceedings of the 42nd MFCS, LIPIcs, vol. 83, pp. 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Park, H., Silvestri, F., Kang, U., Pagh, R.: Mapreduce triangle enumeration with guarantees. In: Proceedings of CIKM 2014, pp. 1739–1748. ACM (2014)
Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the 42nd STOC, pp. 603–610. ACM (2010)
Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs, an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 606–609. Springer, Heidelberg (2005). doi:10.1007/11427186_54
Sorge, M., Weller, M.: The graph parameter hierarchy, TU Berlin (2016). Unpublished Manuscript
Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle \(k\)-core motifs within networks. In: Proceedings of the 28th ICDE, pp. 1049–1060. IEEE Computer Society (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Bentert, M., Fluschnik, T., Nichterlein, A., Niedermeier, R. (2017). Parameterized Aspects of Triangle Enumeration. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-55751-8_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55750-1
Online ISBN: 978-3-662-55751-8
eBook Packages: Computer ScienceComputer Science (R0)