Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

On a Conjecture of Nagy on Extremal Densities

Published: 04 March 2021 Publication History

Abstract

We disprove a conjecture of Nagy on the maximum number of copies $N$($G$, $H$) of a fixed graph $G$ in a large graph $H$ with prescribed edge density. Nagy conjectured that for all $G$, the quantity $N$($G$, $H$) is asymptotically maximized by either a quasi-star or a quasi-clique. We show this is false for infinitely many graphs, the smallest of which has six vertices and six edges. We also propose some new conjectures for the behavior of $N$($G$, $H$) and present some evidence for them.

References

[1]
R. Ahlswede and G. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Hungar., 32 (1978), pp. 97--120, https://doi.org/10.1007/BF01902206.
[2]
N. Alon, On the number of subgraphs of prescribed type of graphs with a given number of edges, Israel J. Math., 38 (1981), pp. 116--130, https://doi.org/10.1007/BF02761855.
[3]
F. Chung, R. Graham, P. Frankl, and J. Shearer, Some intersection theorems for ordered sets and graphs, J. Combin. Theory Ser. A, 43 (1986), pp. 23--37, https://doi.org/10.1016/0097-3165(86)90019-1.
[4]
J. Cutler and J. Radcliffe, Extremal problems for independent set enumeration, Electron. J. Combin., 18 (2011), P169, https://doi.org/10.37236/656.
[5]
A. Dudek, J. Polcyn, and A. Ruciński, Subhypergraph counts in extremal and random hypergraphs and the fractional $q$-independence, J. Comb. Optim., 19 (2010), pp. 184--199, https://doi.org/10.1007/s10878-008-9174-9.
[6]
E. Friedgut and J. Kahn, On the number of copies of one hypergraph in another, Israel J. Math., 105 (1998), pp. 251--256, https://doi.org/10.1007/BF02780332.
[7]
D. Gerbner, D. Nagy, B. Patkós, and M. Vizer, On the maximum number of copies of $H$ in graphs with given size and order, J. Graph Theory, 96 (2020), pp. 34--43, https://doi.org/10.1002/jgt.22563.
[8]
S. Janson, K. Oleszkiewicz, and A. Ruciński, Upper tails for subgraph counts in random graphs, Israel J. Math., 142 (2004), pp. 61--92, https://doi.org/10.1007/BF02771528.
[9]
R. Kenyon, C. Radin, K. Ren, and L. Sadun, Multipodal structure and phase transitions in large constrained graphs, J. Stat. Phys., 168 (2017), pp. 233--258, https://doi.org/10.1007/s10955-017-1804-0.
[10]
L. Lovász, Large Networks and Graph Limits, Amer. Math. Soc. Colloq. Publ. 60, AMS, Providence, RI, 2012, https://doi.org/10.1090/coll/060.
[11]
D. Nagy, On the number of 4-edge paths in graphs with given edge density, Combin. Probab. Comput., 26 (2017), pp. 431--447, https://doi.org/10.1017/S0963548316000389.
[12]
G. Nemhauser and L. Trotter, Properties of vertex packing and independence system polyhedra, Math. Program., 6 (1974), pp. 48--61, https://doi.org/10.1007/BF01580222.
[13]
C. Reiher, The clique density theorem, Ann. of Math., 184 (2016), pp. 683--707, https://doi.org/10.4007/annals.2016.184.3.1.
[14]
C. Reiher and S. Wagner, Maximum star densities, Studia Sci. Math. Hungar., 55 (2018), pp. 238--259, https://doi.org/10.1556/012.2018.55.2.1395.
[15]
A. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin., 9 (1993), pp. 201--204, https://doi.org/10.1007/BF02988307.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 35, Issue 1
DOI:10.1137/sjdmec.35.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 04 March 2021

Author Tags

  1. extremal graph theory
  2. graph densities
  3. subgraph counts
  4. fractional independence number

Author Tags

  1. 05C35
  2. 05C72

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media