Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Note on the Erdös Distinct Subset Sums Problem

Published: 01 January 2021 Publication History

Abstract

We present two short proofs giving the best known asymptotic lower bound for the maximum element in a set of $n$ positive integers with distinct subset sums.

References

[1]
I. Aliev, Siegel's lemma and sum-distinct sets, Discrete Comput. Geom., 39 (2008), pp. 59--66.
[2]
N. Alon and J. H. Spencer, The Probabilistic Method, 4th ed., Wiley, Hoboken, NJ, 2016.
[3]
J. Bae, On subset-sum-distinct sequences, in Analytic Number Theory, vol. 1, Progr. Math. 138, Birkhäuser, Boston, 1996, pp. 31--37.
[4]
T. Bohman, A construction for sets of integers with distinct subset sums, Electron. J. Combin., 5 (1998), Research Paper 3.
[5]
N. D. Elkies, An improved lower bound on the greatest element of a sum-distinct set of fixed order, J. Combin. Theory Ser. A, 41 (1986), pp. 89--94.
[6]
P. Erdös, Problems and results in additive number theory, in Colloque sur la Théorie des Nombres, Bruxelles, 1955, George Thone, Liège; Masson and Cie, Paris, 1956, pp. 127--137.
[7]
R. K. Guy, Sets of integers whose subsets have distinct sums, in Theory and Practice of Combinatorics, North-Holland Math. Stud. 60, Ann. Discrete Math. 12, North-Holland, Amsterdam, 1982, pp. 141--154.
[8]
R. K. Guy, Unsolved Problems in Intuitive Mathematics, vol. I, Number Theory, Springer-Verlag, 1981, Problem C8.
[9]
L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory, 1 (1966), pp. 385--393.
[10]
I. G. Shevtsova, An improvement of convergence rate estimates in the Lyapunov theorem, Dokl. Math., 82 (2010), pp. 862--864.
[11]
D. J. Kleitman, Extremal hypergraph problems, in Surveys in combinatorics, Proc. Seventh British Combinatorial Conf., Cambridge, 1979, London Math. Soc. Lecture Note Ser. 38, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 44--65.
[12]
I. Leader, Discrete isoperimetric inequalities, in Probabilistic combinatorics and its applications (San Francisco, CA, 1991), Proc. Sympos. Appl. Math. 44, AMS Short Course Lecture Notes, Amer. Math. Soc., Providence, RI, 1991, pp. 57--80.

Cited By

View all
  • (2024)New Support Size Bounds and Proximity Bounds for Integer Linear ProgrammingSOFSEM 2024: Theory and Practice of Computer Science10.1007/978-3-031-52113-3_6(82-95)Online publication date: 19-Feb-2024
  • (2022)On Algebraic Constructions of Neural Networks with Small Weights2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834401(3007-3012)Online publication date: 26-Jun-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 35, Issue 1
DOI:10.1137/sjdmec.35.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2021

Author Tags

  1. subset sum
  2. probabilistic method
  3. additive combinatorics
  4. extremal combinatorics
  5. isoperimetric inequality

Author Tags

  1. 05D40
  2. 11B30

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)New Support Size Bounds and Proximity Bounds for Integer Linear ProgrammingSOFSEM 2024: Theory and Practice of Computer Science10.1007/978-3-031-52113-3_6(82-95)Online publication date: 19-Feb-2024
  • (2022)On Algebraic Constructions of Neural Networks with Small Weights2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834401(3007-3012)Online publication date: 26-Jun-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media