Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization

Published: 01 January 2017 Publication History

Abstract

In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems.

References

[1]
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311---323 (2002).
[2]
Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139---157 (2001).
[3]
Choi, T.D., Eslinger, O.J., Gilmore, P., Patrick, A., Kelley, C.T., Gablonsky, J.M.: Iffco: implicit filtering for constrained optimization, version 2. Rep. CRSC-TR99, 23 (1999)
[4]
Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Glob. Optim. 21(4), 415---432 (2001).
[5]
Deb, K., Gulati, S.: Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447---465 (2001).
[6]
Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2004)
[7]
Finkel, D.E.: DIRECT optimization algorithm user guide. Technical report, Center for Research in Scientific Computation. North Carolina State University, Raleigh, NC (2003)
[8]
Finkel, D.E.: Global optimization with the DIRECT algorithm. Ph.D. thesis, North Carolina State University (2005)
[9]
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597---608 (2006)
[10]
Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis, North Carolina State University, Raleigh, NC (2001)
[11]
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27---37 (2001)
[12]
Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Glob. Optim. 57(4), 1193---1212 (2013).
[13]
He, J., Verstak, A.A., Watson, L.T., Stinson, C.A., Ramakrishnan, N., Shaffer, C.A., Rappaport, T.S., Anderson, C.R., Bae, K.K., Jiang, J., et al.: Globally optimal transmitter placement for indoor wireless communication systems. IEEE Trans. Wirel. Commun. 3(6), 1906---1911 (2004)
[14]
Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431---440. Kluwer, Dordrect (2001)
[15]
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157---181 (1993)
[16]
Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303---318 (2009).
[17]
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042---4054 (2012).
[18]
Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1---3), 328---342 (2015).
[19]
Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107---128 (2015).
[20]
Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85(7), 340---349 (2007)
[21]
Li, Y., Peng, Y., Zhou, S.: Improved pso algorithm for shape and sizing optimization of truss structure. J. Civ. Eng. Manag. 19(4), 542---549 (2013)
[22]
Liu, Q.: Linear scaling and the DIRECT algorithm. J. Glob. Optim. 56(3), 1233---1245 (2013).
[23]
Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 60(3), 483---499 (2014).
[24]
Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353---375 (2010)
[25]
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48, 113---128 (2010).
[26]
Lu, Y.C., Jan, J.C., Hung, S.L., Hung, G.H.: Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng. Optim. 45(10), 1251---1271 (2013).
[27]
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
[28]
Mockus, J.: On the Pareto pptimality in the context of Lipschitzian optimization. Informatica 22(4), 521---536 (2011)
[29]
Mockus, J., Paulaviă¿ius, R.: On the reduced-set Pareto---Lipschitzian optimization. Comput. Sci. Tech. 1(2), 184---192 (2013)
[30]
Pardalos, P.M., Siskos, Y. (eds.): Advances in Multi-criteria Analysis. Kluwer, Dordrecht (1995)
[31]
Paulaviă¿ius, R., Sergeyev, Y.D., Kvasov, D.E., ¿ilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2---3), 545---567 (2014).
[32]
Paulaviă¿ius, R., ¿ilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. (2014).
[33]
Paulaviă¿ius, R., ¿ilinskas, J.: Simplicial Global Optimization Springer Briefs in Optimization. Springer, New York (2014).
[34]
Paulaviă¿ius, R., ¿ilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23---40 (2014).
[35]
Perez, R., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19), 1579---1588 (2007)
[36]
Schmit, L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692---699 (1974)
[37]
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910---937 (2006)
[38]
Tang, H., Li, F., Wang, Y., Xue, S., Cheng, R.: Particle swarm optimization algorithm for shape optimization of truss structures. J. Harbin Inst. Technol. 41(12), 94---99 (2009)
[39]
Zhu, H., Bogy, D.B.: DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Trans. Magn. 38(5), 2168---2170 (2002)
[40]
Zhu, H., Bogy, D.B.: Hard disc drive air bearing design: modified DIRECT algorithm and its application to slider air bearing surface optimization. Tribol. Int. 37(2), 193---201 (2004)
[41]
¿ilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131---8136 (2012).
[42]
¿ilinskas, J., Kvasov, D.E., Paulaviă¿ius, R., Sergeyev, Y.D.: Acceleration of simplicial-partition-based methods in Lipschitz global optimization. In: Gergel, V.P. (ed.) High-Performance Computing on Clusters, pp. 128---133. Nizhny Novgorod State University, Nizhny Novgorod (2013)

Cited By

View all
  • (2024)A new partition method for DIRECT-type algorithm based on minimax designJournal of Global Optimization10.1007/s10898-023-01297-688:1(171-197)Online publication date: 1-Jan-2024
  • (2024)An empirical study of various candidate selection and partitioning techniques in the DIRECT frameworkJournal of Global Optimization10.1007/s10898-022-01185-588:3(723-753)Online publication date: 1-Mar-2024
  • (2023)Branch-and-Model: a derivative-free global optimization algorithmComputational Optimization and Applications10.1007/s10589-023-00466-385:2(337-367)Online publication date: 31-Mar-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Global Optimization
Journal of Global Optimization  Volume 67, Issue 1-2
January 2017
440 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 January 2017

Author Tags

  1. DIRECT algorithm
  2. Lipschitz optimization
  3. PLOR algorithm
  4. Truss optimization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A new partition method for DIRECT-type algorithm based on minimax designJournal of Global Optimization10.1007/s10898-023-01297-688:1(171-197)Online publication date: 1-Jan-2024
  • (2024)An empirical study of various candidate selection and partitioning techniques in the DIRECT frameworkJournal of Global Optimization10.1007/s10898-022-01185-588:3(723-753)Online publication date: 1-Mar-2024
  • (2023)Branch-and-Model: a derivative-free global optimization algorithmComputational Optimization and Applications10.1007/s10589-023-00466-385:2(337-367)Online publication date: 31-Mar-2023
  • (2022)DIRECTGO: A New DIRECT-Type MATLAB Toolbox for Derivative-Free Global OptimizationACM Transactions on Mathematical Software10.1145/355975548:4(1-46)Online publication date: 19-Dec-2022
  • (2021)The DIRECT algorithm: 25 years LaterJournal of Global Optimization10.1007/s10898-020-00952-679:3(521-566)Online publication date: 1-Mar-2021
  • (2020)Globally-biased BIRECT algorithm with local accelerators for expensive global optimizationExpert Systems with Applications: An International Journal10.1016/j.eswa.2019.113052144:COnline publication date: 15-Apr-2020
  • (2018)Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constantsJournal of Global Optimization10.1007/s10898-016-0485-671:1(5-20)Online publication date: 1-May-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media