Abstract
In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems.
Similar content being viewed by others
References
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi:10.1023/A:1013729320435
Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi:10.1023/A:1013123110266
Choi, T.D., Eslinger, O.J., Gilmore, P., Patrick, A., Kelley, C.T., Gablonsky, J.M.: Iffco: implicit filtering for constrained optimization, version 2. Rep. CRSC-TR99, 23 (1999)
Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Glob. Optim. 21(4), 415–432 (2001). doi:10.1023/A:1012782825166
Deb, K., Gulati, S.: Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447–465 (2001). doi:10.1016/S0168-874X(00)00057-3
Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2004)
Finkel, D.E.: DIRECT optimization algorithm user guide. Technical report, Center for Research in Scientific Computation. North Carolina State University, Raleigh, NC (2003)
Finkel, D.E.: Global optimization with the DIRECT algorithm. Ph.D. thesis, North Carolina State University (2005)
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)
Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis, North Carolina State University, Raleigh, NC (2001)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37 (2001)
Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Glob. Optim. 57(4), 1193–1212 (2013). doi:10.1007/s10898-012-0020-3
He, J., Verstak, A.A., Watson, L.T., Stinson, C.A., Ramakrishnan, N., Shaffer, C.A., Rappaport, T.S., Anderson, C.R., Bae, K.K., Jiang, J., et al.: Globally optimal transmitter placement for indoor wireless communication systems. IEEE Trans. Wirel. Commun. 3(6), 1906–1911 (2004)
Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer, Dordrect (2001)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi:10.1007/s11590-008-0110-9
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:10.1016/j.cam.2012.02.020
Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015). doi:10.1016/j.cnsns.2014.11.015
Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015). doi:10.1080/0305215X.2013.875165
Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85(7), 340–349 (2007)
Li, Y., Peng, Y., Zhou, S.: Improved pso algorithm for shape and sizing optimization of truss structure. J. Civ. Eng. Manag. 19(4), 542–549 (2013)
Liu, Q.: Linear scaling and the DIRECT algorithm. J. Glob. Optim. 56(3), 1233–1245 (2013). doi:10.1007/s10898-012-9952-x
Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014). doi:10.1007/s10898-013-0119-1
Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48, 113–128 (2010). doi:10.1007/s10898-009-9515-y
Lu, Y.C., Jan, J.C., Hung, S.L., Hung, G.H.: Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng. Optim. 45(10), 1251–1271 (2013). doi:10.1080/0305215X.2012.729054
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Mockus, J.: On the Pareto pptimality in the context of Lipschitzian optimization. Informatica 22(4), 521–536 (2011)
Mockus, J., Paulavičius, R.: On the reduced-set Pareto–Lipschitzian optimization. Comput. Sci. Tech. 1(2), 184–192 (2013)
Pardalos, P.M., Siskos, Y. (eds.): Advances in Multi-criteria Analysis. Kluwer, Dordrecht (1995)
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014). doi:10.1007/s10898-014-0180-4
Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. (2014). doi:10.1007/s11590-014-0772-4
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization Springer Briefs in Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014). doi:10.1007/s10898-013-0089-3
Perez, R., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19), 1579–1588 (2007)
Schmit, L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)
Tang, H., Li, F., Wang, Y., Xue, S., Cheng, R.: Particle swarm optimization algorithm for shape optimization of truss structures. J. Harbin Inst. Technol. 41(12), 94–99 (2009)
Zhu, H., Bogy, D.B.: DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Trans. Magn. 38(5), 2168–2170 (2002)
Zhu, H., Bogy, D.B.: Hard disc drive air bearing design: modified DIRECT algorithm and its application to slider air bearing surface optimization. Tribol. Int. 37(2), 193–201 (2004)
Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012). doi:10.1016/j.amc.2011.07.051
Žilinskas, J., Kvasov, D.E., Paulavičius, R., Sergeyev, Y.D.: Acceleration of simplicial-partition-based methods in Lipschitz global optimization. In: Gergel, V.P. (ed.) High-Performance Computing on Clusters, pp. 128–133. Nizhny Novgorod State University, Nizhny Novgorod (2013)
Acknowledgments
This research was funded by a grant (No. MIP-051/2014) from the Research Council of Lithuania.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mockus, J., Paulavičius, R., Rusakevičius, D. et al. Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization. J Glob Optim 67, 425–450 (2017). https://doi.org/10.1007/s10898-015-0364-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0364-6