Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Using continuous sensor data to formalize a model of in-home activity patterns

Published: 01 January 2020 Publication History

Abstract

Formal modeling and analysis of human behavior can properly advance disciplines ranging from psychology to economics. The ability to perform such modeling has been limited by a lack of ecologically-valid data collected regarding human daily activity. We propose a formal model of indoor routine behavior based on data from automatically-sensed and recognized activities. A mechanistic description of behavior patterns for identical activity is offered to both investigate behavioral norms with 99 smart homes and compare these norms between subgroups. We identify and model the patterns of human behaviors based on inter-arrival times, the time interval between two successive activities, for selected activity classes in the smart home dataset with diverse participants. We also explore the inter-arrival times of sequence of activities in one smart home. To demonstrate the impact such analysis can have on other disciplines, we use this same smart home data to examine the relationship between the formal model and resident health status. Our study reveals that human indoor activities can be described by non-Poisson processes and that the corresponding distribution of activity inter-arrival times follows a Pareto distribution. We further discover that the combination of activities in certain subgroups can be described by multivariate Pareto distributions. These findings will help researchers understand indoor activity routine patterns and develop more sophisticated models of predicting routine behaviors and their timings. Eventually, the findings may also be used to automate diagnoses and design customized behavioral interventions by providing activity-anticipatory services that will benefit both caregivers and patients.

References

[1]
R.P. Adams and D.J.C. MacKay, Bayesian online changepoint detection, 2007.
[2]
S. Aminikhanghahi and D.J. Cook, Using change point detection to automate daily activity segmentation, in: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017, pp. 262–267.
[3]
S. Aminikhanghahi, T. Wang and D.J. Cook, Real-time change point detection with application to smart home time series data, IEEE Trans. Knowl. Data Eng. 31 (2018), 1010–1023.
[4]
P. Andriani and B. McKelvey, Perspective – From Gaussian to Paretian thinking: Causes and implications of power laws in organizations, Organ. Sci. 20(6) (2009), 1053–1071.
[5]
N. Banovic, T. Buzali, F. Chevalier, J. Mankoff and A.K. Dey, Modeling and understanding human routine behavior, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016, pp. 248–260.
[6]
A. Bees, N. York and A. Barabasi, The origin of bursts and heavy tails in human dynamics, Nature 435(7039) (2005), 207–211.
[7]
A. Benmansour, A. Bouchachia and M. Feham, Multioccupant activity recognition in pervasive smart home environments, ACM Comput. Surv. 48(3) (2016), 34.
[12]
C. Chen, D.J. Cook and A.S. Crandall, The user side of sustainability: Modeling behavior and energy usage in the home, Pervasive Mob. Comput. 9(1) (2013), 161–175.
[13]
S. Coles, J. Bawa, L. Trenner and P. Dorazio, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Vol. 208, Springer, 2001.
[14]
L.L. Constantine, Human activity modeling: Toward a pragmatic integration of activity theory and usage-centered design, in: Human-Centered Software Engineering, Springer, 2009, pp. 27–51.
[15]
L.L. Constantine and L.A.D. Lockwood, Software for Use: A Practical Guide to the Models and Methods of Usage-Centered Design, Pearson Education, 1999.
[16]
D. Cook and N. Krishnan, Activity Learning from Sensor Data, Wiley, 2014.
[17]
D.J. Cook, Learning setting-generalized activity models for smart spaces, IEEE Intell. Syst. 7(1) (2012), 32–38.
[18]
D.J. Cook, A.S. Crandall, B.L. Thomas and N.C. Krishnan, CASAS: A smart home in a box, Computer (Long Beach, Calif.) 46(7) (2013), 62–69.
[19]
D.J. Cook, M. Schmitter-Edgecombe, L. Jönsson and A.V. Morant, Technology-enabled assessment of functional health, IEEE Rev. Biomed. Eng. 12 (2018), 319–332.
[20]
A.F. Costa, Y. Yamaguchi, A.J.M. Traina and C. Faloutsos, Modeling temporal activity to detect anomalous behavior in social media, ACM Trans. Knowl. Discov. Data 11(4) (2017), 49.
[21]
J.J. Davis and E.G. Conlon, Identifying compensatory driving behavior among older adults using the situational avoidance questionnaire, J. Safety Res. 63 (2017), 47–55.
[22]
K. Doty, S. Roy and T.R. Fischer, Filtering and smoothing state estimation for flag hidden Markov models, in: 2016 American Control Conference (ACC), 2016, pp. 7042–7047.
[23]
G. Fairchild, K.S. Hickmann, S.M. Mniszewski, S.Y. Del Valle and J.M. Hyman, Optimizing human activity patterns using global sensitivity analysis, Comput. Math. Organ. Theory 20(4) (2014), 394–416.
[24]
D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57(4) (1981), 453–476.
[25]
R.G. Gallager, Poisson processes, in: Stochastic Processes: Theory for Applications, 2013, pp. 74–108.
[26]
R. Gallotti, A. Bazzani, S. Rambaldi and M. Barthelemy, A stochastic model of randomly accelerated walkers for human mobility, Nat. Commun. 7 (2016), 12600.
[27]
Y. Gandica, J. Carvalho, F.S. Dos Aidos, R. Lambiotte and T. Carletti, Stationarity of the inter-event power-law distributions, PLoS One 12(3) (2017), e0174509.
[28]
G. Gay and H. Hembrooke, Activity-Centered Design: An Ecological Approach to Designing Smart Tools and Usable Systems, MIT Press, 2004.
[29]
H. Ghayvat, J. Liu, S.C. Mukhopadhyay and X. Gui, Wellness sensor networks: A proposal and implementation for smart home for assisted living, IEEE Sens. J. 15(12) (2015), 7341–7348.
[30]
M.C. Gonzalez, C.A. Hidalgo and A.-L. Barabasi, Understanding individual human mobility patterns, Nature 453(7196) (2008), 779–782.
[31]
R.F. Grais, J.H. Ellis and G.E. Glass, Assessing the impact of airline travel on the geographic spread of pandemic influenza, Eur. J. Epidemiol. 18(11) (2003), 1065–1072.
[32]
A. Helal, D.J. Cook and M. Schmalz, Smart home-based health platform for behavioral monitoring and alteration of diabetes patients, J. Diabetes Sci. Technol. 3(1) (2009), 141–148.
[33]
V. Hodge and J. Austin, A survey of outlier detection methodologies, Artif. Intell. Rev. 22(2) (2004), 85–126.
[34]
S. Hong, Human movement patterns, mobility models and their impacts on wireless applications. North Carolina State University, 2010.
[35]
R.J. Hyndman, The problem with Sturges’ rule for constructing histograms, Monash Univ., 1995.
[36]
A. Ihler, J. Hutchins and P. Smyth, Adaptive event detection with time-varying Poisson processes, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 207–216.
[37]
Ž. Ivezić, A.J. Connolly, J.T. VanderPlas and A. Gray, Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data, Princeton University Press, 2014.
[38]
F. Jovan, J. Wyatt, N. Hawes and T. Krajník, A Poisson-spectral model for modelling temporal patterns in human data observed by a robot, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4013–4018.
[39]
E. Kim, S. Helal and D. Cook, Human activity recognition and pattern discovery, IEEE Pervasive Comput. 9(1) (2009), 48–53.
[40]
N.C. Krishnan and D.J. Cook, Activity recognition on streaming sensor data, Pervasive Mob. Comput. 10 (2014), 138–154.
[41]
R. Kumar, M. Mahdian and M. McGlohon, Dynamics of conversations, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 553–562.
[42]
T. Kurashima, T. Althoff and J. Leskovec, Modeling interdependent and periodic real-world action sequences, in: Proceedings of the 2018 World Wide Web Conference on World Wide Web, 2018, pp. 803–812.
[43]
O. Kwon, W.-S. Son and W.-S. Jung, The double power law in human collaboration behavior: The case of Wikipedia, Phys. A Stat. Mech. its Appl. 461 (2016), 85–91.
[44]
G. Laput, Y. Zhang and C. Harrison, Synthetic sensors: Towards general-purpose sensing, in: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 3986–3999.
[45]
G. Last and M. Penrose, Lectures on the Poisson Process, Vol. 7, Cambridge University Press, 2017.
[46]
J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance and M. Hurst, Patterns of cascading behavior in large blog graphs, in: Proceedings of the 2007 SIAM International Conference on Data Mining, 2007, pp. 551–556.
[47]
C. Li, W.K. Cheung, J. Liu and J.K. Ng, Automatic extraction of behavioral patterns for elderly mobility and daily routine analysis, ACM Trans. Intell. Syst. Technol. 9(5) (2018), 54.
[48]
H. Li et al., Characterizing smartphone usage patterns from millions of Android users, in: Proceedings of the 2015 Internet Measurement Conference, 2015, pp. 459–472.
[49]
B. Lin et al., Analyzing the relationship between human behavior and indoor air quality, J. Sens. Actuator Networks 6(3) (2017), 13.
[50]
J.G. Oliveira and A.-L. Barabási, Human dynamics: Darwin and Einstein correspondence patterns, Nature 437(7063) (2005), 1251.
[51]
M. Pan et al., Dissecting the learning curve of taxi drivers: A data-driven approach, in: Proceedings of the 2019 SIAM International Conference on Data Mining, 2019, pp. 783–791.
[52]
D. Picard, Testing and estimating change-points in time series, Adv. Appl. Probab. 17(4) (1985), 841–867.
[53]
A. Pieropan, C.H. Ek and H. Kjellström, Functional object descriptors for human activity modeling, in: 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 1282–1289.
[54]
A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang and B.B. Gupta, Efficient IoT-based sensor BIG Data collection-processing and analysis in smart buildings, Futur. Gener. Comput. Syst. 82 (2018), 349–357.
[55]
J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer and A. Vespignani, Characterizing and modeling the dynamics of online popularity, Phys. Rev. Lett. 105(15) (2010), 158701.
[56]
R. Rawassizadeh, E. Momeni, C. Dobbins, J. Gharibshah and M. Pazzani, Scalable daily human behavioral pattern mining from multivariate temporal data, IEEE Trans. Knowl. Data Eng. 28(11) (2016), 3098–3112.
[57]
I. Rhee, M. Shin, S. Hong, K. Lee, S.J. Kim and S. Chong, On the Levy-walk nature of human mobility, IEEE/ACM Trans. Netw. 19(3) (2011), 630–643.
[58]
M. Rosenblatt, Markov Processes, Structure and Asymptotic Behavior: Structure and Asymptotic Behavior, Die Grundlehren der mathematischen Wissenschaften, Vol. 184, Springer, 2012.
[59]
S. Roy, Scaled consensus, Automatica 51 (2015), 259–262.
[60]
Y.U. Saito, T. Watanabe and M. Iwamura, Do larger firms have more interfirm relationships?, Phys. A Stat. Mech. its Appl. 383(1) (2007), 158–163.
[61]
I. Salgado-Ugarte, M. Shimizu and T. Taniuchi, Practical rules for bandwidth selection in univariate density estimation, Stata Tech. Bull. 5(27) (1995), 5–19.
[62]
T.M. Scholz, The human role within organizational change: A complex system perspective, in: Change Management and the Human Factor, Springer, 2015, pp. 19–31.
[63]
C. Song, Z. Qu, N. Blumm and A.-L. Barabási, Limits of predictability in human mobility, Science 327(5968) (2010), 1018–1021.
[64]
D.J.C. Tinghui Wang, Towards unsupervised multi-resident tracking in ambient assisted living: Methods and performance metrics, in: Assistive Technology for the Elderly, 1st edn, N. Suryadevara and S. Mukhopadhyay, ed., Academic Press, 2020.
[65]
C. Truong, L. Oudre and N. Vayatis, A review of change point detection methods, 2018,.
[66]
I. Tsompanidis, A.H. Zahran and C.J. Sreenan, Mobile network traffic: A user behaviour model, in: 2014 7th IFIP Wireless and Mobile Networking Conference (WMNC), 2014, pp. 1–8.
[67]
A. Vázquez, J.G. Oliveira, Z. Dezsö, K. Il Goh, I. Kondor and A.L. Barabási, Modeling bursts and heavy tails in human dynamics, Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. 73 (2006), 036127.
[68]
J. Wan, M.J. O’Grady and G.M. O’Hare, Dynamic sensor event segmentation for real-time activity recognition in a smart home context, Pers. Ubiquitous Comput. 19(2) (2015), 287–301.
[69]
J. Wang, Y. Chen, S. Hao, X. Peng and L. Hu, Deep learning for sensor-based activity recognition: A survey, Pattern Recognit. Lett. 119 (2019), 3–11.
[70]
M. Xue and S. Roy, Spectral and graph-theoretic bounds on steady-state-probability estimation performance for an ergodic Markov chain, J. Franklin Inst. 348(9) (2011), 2448–2467.
[71]
L. Yu, P. Cui, C. Song, T. Zhang and S. Yang, A temporally heterogeneous survival framework with application to social behavior dynamics, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1295–1304.
[72]
M. Yuan, Human dynamics in space and time: A brief history and a view forward, Trans. GIS 22(4) (2018), 900–912.
[73]
K. Zhao, M. Musolesi, P. Hui, W. Rao and S. Tarkoma, Explaining the power-law distribution of human mobility through transportation modality decomposition, Sci. Rep. 5 (2015), 9136.
[74]
W.-Y. Zhu, W.-C. Peng, L.-J. Chen, K. Zheng and X. Zhou, Modeling user mobility for location promotion in location-based social networks, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1573–1582.

Cited By

View all
  • (2024)Sensor event sequence prediction for proactive smart homeJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23042916:3(275-308)Online publication date: 24-Sep-2024
  • (2021)An intelligent model to assist people with disabilities in smart citiesJournal of Ambient Intelligence and Smart Environments10.3233/AIS-21060613:4(301-324)Online publication date: 1-Jan-2021

Index Terms

  1. Using continuous sensor data to formalize a model of in-home activity patterns
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Ambient Intelligence and Smart Environments
      Journal of Ambient Intelligence and Smart Environments  Volume 12, Issue 3
      Impact of Sensor Data in Intelligent Environments
      2020
      94 pages

      Publisher

      IOS Press

      Netherlands

      Publication History

      Published: 01 January 2020

      Author Tags

      1. Human dynamics
      2. population modeling
      3. Pareto distribution
      4. pervasive environment
      5. activity recognition

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 19 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Sensor event sequence prediction for proactive smart homeJournal of Ambient Intelligence and Smart Environments10.3233/AIS-23042916:3(275-308)Online publication date: 24-Sep-2024
      • (2021)An intelligent model to assist people with disabilities in smart citiesJournal of Ambient Intelligence and Smart Environments10.3233/AIS-21060613:4(301-324)Online publication date: 1-Jan-2021

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media