Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Big Graph Analytics Platforms

Published: 12 January 2017 Publication History

Abstract

Due to the growing need to process large graph and network datasetscreated by modern applications, recent years have witnessed a surginginterest in developing big graph platforms. Tens of such big graphsystems have already been developed, but there lacks a systematic categorizationand comparison of these systems. This article provides atimely and comprehensive survey of existing big graph systems, andsummarizes their key ideas and technical contributions from variousaspects. In addition to the popular vertex-centric systems which espousea think-like-a-vertex paradigm for developing parallel graph applications,this survey also covers other programming and computationmodels, contrasts those against each other, and provides a vision forthe future research on big graph analytics platforms. This survey aimsto help readers get a systematic picture of the landscape of recent biggraph systems, focusing not just on the systems themselves, but alsoon the key innovations and design philosophies underlying them.

References

[1]
Charu C. Aggarwal, Yao Li, Philip S. Yu, and Ruoming Jin. On dense pattern mining in graph streams. VLDB, 2010.
[2]
Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A task taxonomy for network evolution analysis. IEEE Transactions on Visualization and Computer Graphics, 2014.
[3]
Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica, JianWen, and Till Westmann. Asterixdb: A scalable, open source BDMS. PVLDB, 7(14):1905-1916, 2014.
[4]
Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EPSPARQL: a unified language for event processing and stream reasoning. In WWW, 2011.
[5]
Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending links in social networks. In WSDM, pages 635-644, 2011.
[6]
Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized pagerank. VLDB, 2010.
[7]
Isaac Balbin and Kotagiri Ramamohanarao. A generalization of the differential approach to recursive query evaluation. J. Log. Program., 4(3):259-262, 1987.
[8]
François Bancilhon and Raghu Ramakrishnan. An amateur's introduction to recursive query processing strategies. In SIGMOD, pages 16-52, 1986.
[9]
François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets and other strange ways to implement logic programs. In VLDB, pages 1-15, 1986.
[10]
Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael Grossniklaus. An execution environment for C-SPARQL queries. In EDBT, 2010.
[11]
Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on complex networks. Cambridge University Press Cambridge, 2008.
[12]
Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-streaming algorithms for local triangle counting in massive graphs. In KDD, pages 16-24, 2008.
[13]
Catriel Beeri, Shamim A. Naqvi, Raghu Ramakrishnan, Oded Shmueli, and Shalom Tsur. Sets and negation in a logic database language (LDL1). In PODS, pages 21-37, 1987.
[14]
Tanya Y Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks. In SIGKDD, 2006.
[15]
Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. Hybrid parallelization strategies for large-scale machine learning in systemml. PVLDB, 7(7):553-564, 2014.
[16]
Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. Systemml: Declarative machine learning on spark. PVLDB, 9(13):1425-1436, 2016.
[17]
Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Vernica. Hyracks: A flexible and extensible foundation for data-intensive computing. In ICDE, 2011.
[18]
Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh International World-Wide Web Conference (WWW), pages 107-117, 1998.
[19]
Yingyi Bu. On Software Infrastructure for Scalable Graph Analytics. PhD thesis, Computer Science Department, University of California, Irvine, August 2015.
[20]
Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie. Pregelix: Big(ger) graph analytics on a dataflow engine. PVLDB, 8(2):161-172, 2014.
[21]
Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient data-parallel pipelines. In PLDI, pages 363-375, 2010.
[22]
K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63-75, 1985.
[23]
Surajit Chaudhuri. An overview of query optimization in relational systems. In PODS, pages 34-43, 1998.
[24]
Jiefeng Cheng, Qin Liu, Zhenguo Li, Wei Fan, John C. S. Lui, and Cheng He. VENUS: vertex-centric streamlined graph computation on a single PC. In ICDE, pages 1131-1142, 2015.
[25]
Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the pulse of a fast-changing and connected world. In EuroSys, pages 85-98, 2012.
[26]
Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller, Franz Josef Och, Christopher Olston, and Fernando Pereira. Yedalog: Exploring knowledge at scale. In SNAPL, pages 63-78, 2015.
[27]
Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. One trillion edges: Graph processing at facebook-scale. PVLDB, 8(12):1804-1815, 2015.
[28]
Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and John Feo. A selectivity based approach to continuous pattern detection in streaming graphs. EDBT, 2015.
[29]
Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. In PODS, 2008.
[30]
Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei Zaharia. GraphFrames: An integrated api for mixing graph and relational queries. In Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, GRADES '16, pages 2:1-2:8, 2016.
[31]
Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, pages 137-150, 2004.
[32]
Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off space for passes in graph streaming problems. ACM Trans. Algorithms, 2009.
[33]
David J. DeWitt and Jim Gray. Parallel database systems: The future of high performance database systems. Commun. ACM, 35(6):85-98, 1992.
[34]
Jason Eisner and Nathaniel Wesley Filardo. Dyna: Extending datalog for modern AI. In Datalog, pages 181-220, 2010.
[35]
Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold Reinwald. Compressed linear algebra for large-scale machine learning. PVLDB, 9(12):960-971, 2016.
[36]
E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375-408, September 2002.
[37]
David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph Algorithms. CRC Press, 1999.
[38]
Shimon Even. Graph Algorithms. Cambridge University Press, New York, NY, USA, 2nd edition, 2011.
[39]
Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning fast iterative data flows. PVLDB, 5(11):1268-1279, 2012.
[40]
Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. In ICALP, 2004.
[41]
Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph distances in the streaming model: the value of space. In SODA, 2005.
[42]
Zhisong Fu, Bryan B. Thompson, and Michael Personick. Mapgraph: A high level API for fast development of high performance graph analytics on gpus. In GRADES, pages 2:1-2:6, 2014.
[43]
Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu. Continuous pattern detection over billion-edge graph using distributed framework. In ICDE, pages 556-567, 2014.
[44]
B. Gedik and R. Bordawekar. Disk-based management of interaction graphs. TKDE, 2014.
[45]
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In SOSP, pages 29-43, 2003.
[46]
Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar Vaithyanathan. Systemml: Declarative machine learning on mapreduce. In ICDE, pages 231-242, 2011.
[47]
A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi. An analytics-aware conceptual model for evolving graphs. In Data Warehousing and Knowledge Discovery. Springer, 2013.
[48]
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs. In OSDI, pages 17-30, 2012.
[49]
Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In OSDI, pages 599-613, 2014.
[50]
Goetz Graefe. Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):73-170, 1993.
[51]
D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of communities in dynamic social networks. In ASONAM, 2010.
[52]
Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella, and Theodore L. Willke. How well do graph-processing platforms perform? an empirical performance evaluation and analysis. In IPDPS, pages 395-404, 2014.
[53]
Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. WTF: the who to follow service at twitter. In WWW, pages 505-514, 2013.
[54]
Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous parallel execution in pregel-like graph processing systems. PVLDB, 8(9):950-961, 2015.
[55]
Minyang Han, Khuzaima Daudjee, Khaled Ammar, M Tamer Özsu, Xingfang Wang, and Tianqi Jin. An experimental comparison of Pregel-like graph processing systems. PVLDB, 7(12):1047-1058, 2014a.
[56]
Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a graph engine for temporal graph analysis. In EuroSys, pages 1:1-1:14, 2014b.
[57]
Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu. TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC. In KDD, pages 77-85, 2013.
[58]
Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. More effective distributed ML via a stale synchronous parallel parameter server. In NIPS, pages 1223-1231, 2013.
[59]
Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-marl: a DSL for easy and efficient graph analysis. In ASPLOS, pages 349-362, 2012.
[60]
Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. Simplifying scalable graph processing with a domain-specific language. In CGO, page 208, 2014.
[61]
Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish Tatikonda, and Frederick R. Reiss. Resource elasticity for large-scale machine learning. In SIGMOD, pages 137-152, 2015.
[62]
W. Huo and V. Tsotras. Efficient temporal shortest path queries on evolving social graphs. In SSDBM, 2014.
[63]
Dawei Jiang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Sai Wu. epic: an extensible and scalable system for processing big data. PVLDB, 7(7): 541-552, 2014.
[64]
Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. Graph analytics using the Vertica relational database. CoRR, abs/1412.5263, 2014a.
[65]
Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande, and Mike Stonebraker. VERTEXICA: your relational friend for graph analytics! PVLDB, 7(13):1669-1672, 2014b.
[66]
Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in graphs. In Lusheng Wang, editor, Computing and Combinatorics, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.
[67]
U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: A peta-scale graph mining system. In ICDM, pages 229-238, 2009.
[68]
U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. GBASE: a scalable and general graph management system. In SIGKDD, pages 1091-1099, 2011.
[69]
George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput., 48(1):96-129, 1998.
[70]
Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39-43, 1953.
[71]
Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear algebra, volume 22. SIAM, 2011.
[72]
Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos Kalnis. Mizan: a system for dynamic load balancing in large-scale graph processing. In EuroSys, pages 169-182, 2013.
[73]
Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha: vertex-centric graph processing on gpus. In HPDC, pages 239-252, 2014.
[74]
Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over historical graph data. In ICDE, pages 997-1008, 2013.
[75]
Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph data at scale. In EDBT, pages 65-76, 2016.
[76]
Eric D Kolaczyk. Statistical analysis of network data. Springer, 2009.
[77]
G. Koloniari and E. Pitoura. Partial view selection for evolving social graphs. In GRADES workshop, 2013.
[78]
M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR, 2015.
[79]
Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph computation on just a PC. In OSDI, pages 31-46, 2012.
[80]
A. Labouseur, J. Birnbaum, Jr. Olsen, P., S. Spillane, J. Vijayan, J. Hwang, and W. Han. The G* graph database: efficiently managing large distributed dynamic graphs. Distributed and Parallel Databases, 2014.
[81]
Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enumeration in mapreduce. PVLDB, 8(10):974-985, 2015.
[82]
Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in ego networks. In NIPS, pages 548-556, 2012.
[83]
Jimmy Lin and Michael Schatz. Design patterns for efficient graph algorithms in mapreduce. In MLG, pages 78-85. ACM, 2010.
[84]
Guimei Liu and Limsoon Wong. Effective pruning techniques for mining quasi-cliques. In ECML/PKDD Part II, pages 33-49, 2008.
[85]
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning. In UAI, pages 340-349, 2010.
[86]
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A framework for machine learning in the cloud. PVLDB, 5(8):716-727, 2012.
[87]
Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed graph computing systems: An experimental evaluation. PVLDB, 8(3):281-292, 2014.
[88]
Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. LLAMA: efficient graph analytics using large multiversioned arrays. In ICDE, pages 363-374, 2015.
[89]
Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD Conference, pages 135-146, 2010.
[90]
Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power of datalog recursion. VLDB J., 22(4):471-493, 2013.
[91]
Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Comput. Surv., 48(2):25, 2015.
[92]
Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what cost. In HotOS. USENIX Association, 2015.
[93]
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets. PVLDB, 3(1):330-339, 2010.
[94]
Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. Immortalgraph: A system for storage and analysis of temporal graphs. ACM TOS, July 2015. URL http://research.microsoft.com/apps/pubs/default.aspx?id=242176.
[95]
Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. REX: Recursive, delta-based data-centric computation. PVLDB, 5(11):1280-1291, 2012.
[96]
Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs efficiently. In SIGMOD, pages 145-156, 2012.
[97]
Jayanta Mondal and Amol Deshpande. Eagr: supporting continuous egocentric aggregate queries over large dynamic graphs. In SIGMOD, pages 1335-1346, 2014.
[98]
Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of duplicates and aggregates. In VLDB, pages 264-277, 1990.
[99]
Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. Naiad: A timely dataflow system. In SOSP, pages 439-455, 2013.
[100]
Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for graph analytics. In SOSP, pages 456-471, 2013.
[101]
Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal networks. Physical Review E, 2011.
[102]
Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, Muhammad Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms. In PLDI, pages 12-25, 2011.
[103]
Abdul Quamar and Amol Deshpande. NScaleSpark: Subgraph-centric graph analytics on Apache Spark. In Proceedings of the SIGMOD Workshop on Network Data Analytics (NDA), pages 5:1-5:8, 2016.
[104]
Abdul Quamar, Amol Deshpande, and Jimmy Lin. NScale: neighborhood-centric large-scale graph analytics in the cloud. VLDB Journal, 25(2): 125-150, 2016.
[105]
Louise Quick, Paul Wilkinson, and David Hardcastle. Using pregel-like large scale graph processing frameworks for social network analysis. In ASONAM, pages 457-463, 2012.
[106]
Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying historical evolving graph sequences. PVLDB, 4(11):726-737, 2011.
[107]
Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389-401, 2011.
[108]
Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In PODS, pages 114-126, 1992.
[109]
Maayan Roth, Assaf Ben-David, David Deutscher, Guy Flysher, Ilan Horn, Ari Leichtberg, Naty Leiser, Yossi Matias, and Ron Merom. Suggesting friends using the implicit social graph. In KDD, pages 233-242, 2010.
[110]
Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric graph processing using streaming partitions. In SOSP, pages 472-488, 2013.
[111]
Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. Chaos: scale-out graph processing from secondary storage. In SOSP, pages 410-424, 2015.
[112]
Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In SSDBM, pages 22:1-22:12, 2013.
[113]
Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on pregellike systems. PVLDB, 7(7):577-588, 2014.
[114]
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey. Navigating the maze of graph analytics frameworks using massive graph datasets. In SIGMOD, pages 979-990, 2014.
[115]
Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. "All roads lead to rome": optimistic recovery for distributed iterative data processing. In CIKM, pages 1919-1928, 2013.
[116]
Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions for efficient social network analysis. In ICDE, pages 278-289, 2013a.
[117]
Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed socialite: A datalog-based language for large-scale graph analysis. PVLDB, 6 (14):1906-1917, 2013b.
[118]
Zechao Shang and Jeffrey Xu Yu. Catch the wind: Graph workload balancing on cloud. In ICDE, pages 553-564, 2013.
[119]
Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine on a memory cloud. In SIGMOD, pages 505-516, 2013.
[120]
Yingxia Shao, Bin Cui, and Lin Ma. PAGE: A partition aware engine for parallel graph computation. IEEE Trans. Knowl. Data Eng., 27(2):518-530, 2015.
[121]
Yanyan Shen, Gang Chen, H. V. Jagadish, Wei Lu, Beng Chin Ooi, and Bogdan Marius Tudor. Fast failure recovery in distributed graph processing systems. PVLDB, 8(4):437-448, 2014.
[122]
Yossi Shiloach and Uzi Vishkin. An o(log n) parallel connectivity algorithm. J. Algorithms, 3(1):57-67, 1982.
[123]
Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive queries with monotonic aggregates in deals. In ICDE, pages 867-878, 2015.
[124]
Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing framework for shared memory. In ACM SIGPLAN Notices, pages 135-146, 2013.
[125]
David E. Simmen, Karl Schnaitter, Jeff Davis, Yingjie He, Sangeet Lohariwala, Ajay Mysore, Vinayak Shenoi, Mingfeng Tan, and Yu Xiao. Large-scale graph analytics in aster 6: Bringing context to big data discovery. PVLDB, 7(13):1405-1416, 2014.
[126]
Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K. Prasanna. Goffish: A sub-graph centric framework for large-scale graph analytics. In Euro-Par, pages 451-462, 2014.
[127]
Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. Event pattern matching over graph streams. VLDB, 2014.
[128]
Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In SIGKDD, pages 1222-1230, 2012.
[129]
Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient subgraph matching on billion node graphs. PVLDB, 5(9):788-799, 2012.
[130]
Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Subramanya Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep Dubey. Graphmat: High performance graph analytics made productive. PVLDB, 8(11):1214-1225, 2015.
[131]
Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In WWW, pages 607-614, 2011.
[132]
Aubrey Tatarowicz, Carlo Curino, Evan P. C. Jones, and Sam Madden. Lookup tables: Fine-grained partitioning for distributed databases. In ICDE, pages 102-113, 2012.
[133]
Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed graph mining. In SOSP, pages 425-440, 2015.
[134]
Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a petabyte scale data warehouse using hadoop. In ICDE, pages 996-1005, 2010.
[135]
Yuanyuan Tian, Shirish Tatikonda, and Berthold Reinwald. Scalable and numerically stable descriptive statistics in systemml. In ICDE, pages 1351-1359, 2012.
[136]
Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and John McPherson. From "think like a vertex" to "think like a graph". PVLDB, 7(3):193-204, 2013.
[137]
Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O'Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. In SOCC, pages 5:1-5:16, 2013.
[138]
Changliang Wang and Lei Chen. Continuous subgraph pattern search over graph streams. In ICDE, 2009.
[139]
Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-tolerant recursive datalog evaluation in shared-nothing engines. PVLDB, 8(12):1542-1553, 2015.
[140]
Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan. Replication-based fault-tolerance for large-scale graph processing. In DSN, pages 562-573, 2014.
[141]
Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. Gram: Scaling graph computation to the trillions. In SoCC, pages 408-421, 2015.
[142]
Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. Scalable maximum clique computation using mapreduce. In ICDE, pages 74-85, 2013.
[143]
Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. SYNC or ASYNC: time to fuse for distributed graph-parallel computation. In PPoPP, pages 194-204, 2015a.
[144]
Wenlei Xie, Guozhang Wang, David Bindel, Alan J. Demers, and Johannes Gehrke. Fast iterative graph computation with block updates. PVLDB, 6 (14):2014-2025, 2013.
[145]
Wenlei Xie, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Peter J. Haas. Dynamic interaction graphs with probabilistic edge decay. In ICDE, pages 1143-1154, 2015b.
[146]
Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande. Graphgen: Exploring interesting graphs in relational data. PVLDB, 8(12), 2015.
[147]
Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Blogel: A block-centric framework for distributed computation on real-world graphs. PVLDB, 7(14): 1981-1992, 2014a.
[148]
Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel algorithms for graph connectivity problems with performance guarantees. PVLDB, 7(14):1821-1832, 2014b.
[149]
Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for message reduction and load balancing in distributed graph computation. In WWW, pages 1307-1317, 2015.
[150]
Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. Big graph analytics systems. In SIGMOD, pages 2241-2243, 2016a.
[151]
Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen Zhang, and Wilfred Ng. A general-purpose query-centric framework for querying big graphs. PVLDB, 9(7):564-575, 2016b.
[152]
Da Yan, James Cheng, and Fan Yang. Lightweight fault tolerance in large-scale distributed graph processing. CoRR, abs/1601.06496, 2016c.
[153]
Da Yan, Yuzhen Huang, James Cheng, and Huanhuan Wu. Efficient processing of very large graphs in a small cluster. CoRR, abs/1601.05590, 2016d.
[154]
Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Parallel bottom-up evaluation of logic programs: Deals on shared-memory multicore machines. In ICLP, 2015.
[155]
Philip S. Yu, Xin Li, and Bing Liu. On the temporal dimension of search. In WWW Alt, pages 448-449, 2004.
[156]
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, pages 15-28, 2012.
[157]
Honglei Zhang, Jenni Raitoharju, Serkan Kiranyaz, and Moncef Gabbouj. Limited random walk algorithm for big graph data clustering. CoRR, abs/1606.06450, 2016.
[158]
Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Maiter: An asynchronous graph processing framework for delta-based accumulative iterative computation. IEEE Trans. Parallel Distrib. Syst., 25(8):2091-2100, 2014.
[159]
Peixiang Zhao, Charu C. Aggarwal, and Min Wang. gSketch: on query estimation in graph streams. VLDB, 2011.
[160]
Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein, Carey E. Priebe, and Alexander S. Szalay. Flashgraph: Processing billion-node graphs on an array of commodity ssds. In FAST, pages 45-58, 2015.
[161]
Li Zheng, Chao Shen, Liang Tang, Tao Li, Steve Luis, and Shu-Ching Chen. Applying data mining techniques to address disaster information management challenges on mobile devices. In KDD, pages 283-291, 2011.
[162]
Jianlong Zhong and Bingsheng He. Medusa: Simplified graph processing on gpus. IEEE Trans. Parallel Distrib. Syst., 25(6):1543-1552, 2014.
[163]
Chang Zhou, Jun Gao, Binbin Sun, and Jeffrey Xu Yu. Mocgraph: Scalable distributed graph processing using message online computing. PVLDB, 8 (4):377-388, 2014.
[164]
Yang Zhou, Ling Liu, Kisung Lee, and Qi Zhang. Graphtwist: Fast iterative graph computation with two-tier optimizations. PVLDB, 8(11):1262-1273, 2015.
[165]
Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph processing on a single machine using 2-level hierarchical partitioning. In USENIX ATC, pages 375-386, 2015.
[166]
Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-centric distributed graph processing system. In OSDI, 2016.

Cited By

View all
  • (2024)A Comprehensive Survey and Experimental Study of Subgraph Matching: Trends, Unbiasedness, and InteractionProceedings of the ACM on Management of Data10.1145/36393152:1(1-29)Online publication date: 26-Mar-2024
  • (2024)Systems for Scalable Graph Analytics and Machine Learning: Trends and MethodsProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679101(5547-5550)Online publication date: 21-Oct-2024
  • (2024)The Future of Graph AnalyticsCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3658369(544-545)Online publication date: 9-Jun-2024
  • Show More Cited By

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Foundations and Trends in Databases
Foundations and Trends in Databases  Volume 7, Issue 1-2
12 1 2017
199 pages
ISSN:1931-7883
EISSN:1931-7891
Issue’s Table of Contents

Publisher

Now Publishers Inc.

Hanover, MA, United States

Publication History

Published: 12 January 2017

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Comprehensive Survey and Experimental Study of Subgraph Matching: Trends, Unbiasedness, and InteractionProceedings of the ACM on Management of Data10.1145/36393152:1(1-29)Online publication date: 26-Mar-2024
  • (2024)Systems for Scalable Graph Analytics and Machine Learning: Trends and MethodsProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679101(5547-5550)Online publication date: 21-Oct-2024
  • (2024)The Future of Graph AnalyticsCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3658369(544-545)Online publication date: 9-Jun-2024
  • (2021)Teseo and the analysis of structural dynamic graphsProceedings of the VLDB Endowment10.14778/3447689.344770814:6(1053-1066)Online publication date: 12-Apr-2021
  • (2021)Handling Iterations in Distributed Dataflow SystemsACM Computing Surveys10.1145/347760254:9(1-38)Online publication date: 8-Oct-2021
  • (2021)Vertex-centric Parallel Computation of SQL QueriesProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457314(1664-1677)Online publication date: 9-Jun-2021
  • (2021)Cache-Efficient Fork-Processing Patterns on Large GraphsProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457253(1208-1221)Online publication date: 9-Jun-2021
  • (2021)iTurboGraphProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457243(977-990)Online publication date: 9-Jun-2021
  • (2021)Theoretically Efficient Parallel Graph Algorithms Can Be Fast and ScalableACM Transactions on Parallel Computing10.1145/34343938:1(1-70)Online publication date: 22-Apr-2021
  • (2021)Parallel mining of large maximal quasi-cliquesThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00712-231:4(649-674)Online publication date: 26-Nov-2021
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media