Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Graph Problems in a Semi-streaming Model

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

We formalize a potentially rich new streaming model, the semi-streaming model, that we believe is necessary for the fruitful study of efficient algorithms for solving problems on massive graphs whose edge sets cannot be stored in memory. In this model, the input graph, G=(V,E), is presented as a stream of edges (in adversarial order), and the storage space of an algorithm is bounded by O(n·polylog n), where n = |V|. We are particularly interested in algorithms that use only one pass over the input, but, for problems where this is provably insufficient, we also look at algorithms using constant or, in some cases, logarithmically many passes. In the course of this general study, we give semi-streaming constant approximation algorithms for the unweighted and weighted matching problems, along with a further algorithm improvement for the bipartite case. We also exhibit log n/log log n semi-streaming approximations to the diameter and the problem of computing the distance between specified vertices in a weighted graph. These are complemented by Ω (log(1 − − ε) n) lower bounds.

This work was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research under Grant N00014-01-1-0795.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abello, J., Buchsbaum, A.L., Westbrook, J.R.: A Functional Approach to External Graph Algorithms. Algorithmica 32(3), 437–458 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D.: Generating sparse spanners for weighted graphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 26–37. Springer, Heidelberg (1990)

    Google Scholar 

  3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buchsbaum, A.L., Giancarlo, R., Westbrook, J.R.: On finding common neighborhoods in massive graphs. Theoretical Computer Science 299(1-3), 707–718 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 623–632 (2002)

    Google Scholar 

  6. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. on Computing 28, 210–236 (1998)

    Article  MATH  Google Scholar 

  8. Drineas, P., Kannan, R.: Pass Efficient Algorithm for approximating large matrices. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 223–232 (2003)

    Google Scholar 

  9. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. CRC Handbook of Algorithms and Theory of Computation, ch. 8 (1999)

    Google Scholar 

  10. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1 difference algorithm for massive data streams. SIAM Journal on Computing 32(1), 131–151 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Flajolet, P., Martin, G.N.: Probabilistic counting. In: Proc. 24th IEEE Symposium on Foundation of Computer Science, pp. 76–82 (1983)

    Google Scholar 

  12. Gilbert, A.C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small-space algorithms for approximate histogram maintenance. In: Proc. 34th ACM Symposium on Theory of Computing, pp. 389–398 (2002)

    Google Scholar 

  13. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: Proc. 33th ACM Symposium on Theory of Computing, pp. 471–475 (2001)

    Google Scholar 

  14. Rauch Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. Technical Report 1998-001, DEC Systems Research Center (1998)

    Google Scholar 

  15. Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. In: Proc. 41th IEEE Symposium on Foundations of Computer Science, pp. 189–197 (2000)

    Google Scholar 

  16. Karpinski, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problems. Oxford Lecture Series in Math. and its Appl. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Kalyanasundaram, B., Schnitger, G.: The Probabilistic Communication Complexity of Set Intersection. SIAM Journal on Discrete Math. 5, 545–557 (1990)

    Article  MathSciNet  Google Scholar 

  18. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting large-scale knowledge bases from the web. In: Proceedings of the 25th VLDB Conference, pp. 639–650 (1999)

    Google Scholar 

  19. Muthukrishnan, S.: Data streams: Algorithms and applications (2003), Available at http://athos.rutgers.edu/~muthu/stream-1-1.ps

  20. Tarjan, R.: Data Structures and Network Algorithms. SIAM, Philadelphia (1983)

    Google Scholar 

  21. Uehara, R., Chen, Z.: Parallel approximation algorithms for maximum weighted matching in general graphs. Information Processing Letters 76(1-2), 13–17 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J. (2004). On Graph Problems in a Semi-streaming Model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics