Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

DimmStore: memory power optimization for database systems

Published: 01 July 2019 Publication History

Abstract

Memory can consume a substantial amount of power in database servers, yet memory power has received considerably less attention than CPU power. Memory power consumption is also highly non-proportional. Thus, memory power becomes even more significant in the common case in which a database server is either not completely busy or not completely full. In this paper, we study the application of two memory power optimization techniques - rank-aware allocation and rate-based layout - to database systems. By concentrating memory load, rather than spreading it out evenly, these techniques create and exploit memory idleness to achieve power savings. We have implemented these techniques in a prototype database system called DimmStore. DimmStore is part of a memory power testbed which includes customized hardware with direct power measurement capabilities, allowing us to measure the techniques' effectiveness. We use the testbed to empirically characterize the power saving opportunities provided by these techniques, as well as their performance impact, under YCSB and TPC-C workloads. Under simple YCSB workloads, power savings ranged up to 50%, depending on load and space utilization, with little performance impact. Savings were smaller, but still significant, for TPC-C, which has more complex data locality characteristics.

References

[1]
Transaction Processing Performance Council. TPC BENCHMARK C. Standard Specification. Revision 5.11, 2010.
[2]
JESD79-4a. DDR4 SDRAM. JEDEC Standard., Nov. 2013.
[3]
R. Appuswamy, M. Olma, and A. Ailamaki. Scaling the Memory Power Wall With DRAM-Aware Data Management. In Proc. Int'l Workshop on Data Management on New Hardware, pages 3:1--3:9, 2015.
[4]
J. Arulraj and A. Pavlo. How to build a non-volatile memory database management system. In Proc. SIGMOD, pages 1753--1758, 2017.
[5]
C. S. Bae and T. Jamel. Energy-aware Memory Management through Database Buffer Control. In Proc. Workshop on Energy-Efficient Design, 2011.
[6]
J. Chen, Y. Deng, and Z. Huang. HDCat: Effectively identifying hot data in large-scale I/O streams with enhanced temporal locality. In Proc. Int'l Conf. on Algorithms and Architectures for Parallel Processing, pages 120--133, 2015.
[7]
J. Chou, J. Kim, and D. Rotem. Energy-aware scheduling in disk storage systems. In Proc. ICDCS, pages 423--433, 2011.
[8]
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving systems with YCSB. In Proc. SoCC, pages 143--154, 2010.
[9]
H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory power management via dynamic voltage/frequency scaling. In Proc. ICAC, pages 31--40, 2011.
[10]
J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik. Anti-Caching: A new approach to database management system architecture. PVLDB, 6(14):1942--1953, 2013.
[11]
V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-oriented compiler optimizations for partitioned memory architectures. In Proc. Int'l Conf. on Compilers, Architecture, and Synthesis for Embedded Systems, pages 138--147, 2000.
[12]
V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Scheduler-based DRAM energy management. In Proc. Design Automation Conference, page 697, 2002.
[13]
Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale: Active low-power modes for main memory. SIGPLAN Not., 47(4):225--238, Mar. 2011.
[14]
S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H. Franke, N. Vijaykrishnan, and M. J. Irwin. Interplay of energy and performance for disk arrays running transaction processing workloads. In Proc. Int'l Symp. on Performance Analysis of Systems and Software, pages 123--132, 2003.
[15]
J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient identification of hot data for flash memory storage systems. ACM Trans. Storage, 2(1):22--40, Feb. 2006.
[16]
H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware virtual memory. In Proc. USENIX Annual Technical Conference, pages 5--5, 2003.
[17]
H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improving energy efficiency by making dram less randomly accessed. In Proc. ISPLED, pages 393--398, 2005.
[18]
G. Jia, X. Li, J. Wan, L. Shi, and C. Wang. Coordinate page allocation and thread group for improving main memory power efficiency. In Proc. HotPower, 2013.
[19]
R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: a high-performance, distributed main memory transaction processing system. PVLDB, 1(2):1496--1499, 2008.
[20]
A. Karyakin and K. Salem. An analysis of memory power consumption in database systems. In Proc. Int'l Workshop on Data Management on New Hardware, pages 2:1--2:9, 2017.
[21]
H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez. Rubik: Fast analytical power management for latency-critical systems. In Proc. IEEE MICRO, pages 598--610, 2015.
[22]
M. Korkmaz, M. Karsten, K. Salem, and S. Salihoglu. Workload-aware cpu performance scaling for transactional database systems. In Proc. SIGMOD, pages 291--306, 2018.
[23]
W. Lang, R. Kandhan, and J. Patel. Rethinking query processing for energy efficiency: Slowing down to win the race. IEEE Data Eng. Bull., 34:12--23, 2011.
[24]
K. T. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. C. Lee, and M. Horowitz. Rethinking dram power modes for energy proportionality. In Proc. IEEE MICRO, pages 131--142, 2012.
[25]
D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical power management for enterprise storage. ACM Trans. Storage, 4(3):10:1--10:23, 2008.
[26]
Qingbo Zhu, F. M. David, C. F. Devaraj, Zhenmin Li, Yuanyuan Zhou, and Pei Cao. Reducing energy consumption of disk storage using power-aware cache management. In Proc. HPCA, pages 118--118, 2004.
[27]
A. Sharifi, W. Ding, D. Guttman, H. Zhao, X. Tang, M. Kandemir, and C. Das. Demm: a dynamic energy-saving mechanism for multicore memories. In Proc. MASCOTS, pages 210--220, 2017.
[28]
A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G. Koomey, E. R. Masanet, N. Horner, I. L. Azevedo, and W. Lintner. United States data center energy usage report. Technical Report LBNL-1005775, Lawrence Berkeley National Laboratory, June 2016.
[29]
R. Stoica and A. Ailamaki. Enabling efficient OS paging for main-memory OLTP databases. Proc. Int'l Workshop on Data Management on New Hardware, 2013.
[30]
R. Stoica, J. J. Levandoski, and P.-A. Larson. Identifying hot and cold data in main-memory databases. In Proc. ICDE, pages 26--37, 2013.
[31]
D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the Energy Efficiency of a Database Server. In Proc. SIGMOD, pages 231--242, 2010.
[32]
D. Wu, B. He, X. Tang, J. Xu, and M. Guo. Ramzzz: Rank-aware dram power management with dynamic migrations and demotions. In Proc. Supercomputing, pages 32:1--32:11, 2012.
[33]
D. Zhang, M. Ehsan, M. Ferdman, and R. Sion. Dimmer: A case for turning off dimms in clouds. In Proc. SoCC, pages 11:1--11:8, 2014.
[34]
H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank: Adaptive DRAM architecture for improving memory power efficiency. In Proc. IEEE MICRO, pages 210--221, 2008.

Cited By

View all
  • (2024)Energy-Aware Analytics in the CloudProceedings of the International Workshop on Big Data in Emergent Distributed Environments10.1145/3663741.3664789(1-6)Online publication date: 9-Jun-2024
  • (2024)Energy consumption estimation and profiling for queries in distributed database systems based on a bottom-up comprehensive energy modelFuture Generation Computer Systems10.1016/j.future.2024.04.059159:C(379-394)Online publication date: 1-Oct-2024
  • (2023)DRAM Translation Layer: Software-Transparent DRAM Power Savings for Disaggregated MemoryProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589051(1-13)Online publication date: 17-Jun-2023
  • Show More Cited By
  1. DimmStore: memory power optimization for database systems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 12, Issue 11
      July 2019
      543 pages

      Publisher

      VLDB Endowment

      Publication History

      Published: 01 July 2019
      Published in PVLDB Volume 12, Issue 11

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)24
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Energy-Aware Analytics in the CloudProceedings of the International Workshop on Big Data in Emergent Distributed Environments10.1145/3663741.3664789(1-6)Online publication date: 9-Jun-2024
      • (2024)Energy consumption estimation and profiling for queries in distributed database systems based on a bottom-up comprehensive energy modelFuture Generation Computer Systems10.1016/j.future.2024.04.059159:C(379-394)Online publication date: 1-Oct-2024
      • (2023)DRAM Translation Layer: Software-Transparent DRAM Power Savings for Disaggregated MemoryProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589051(1-13)Online publication date: 17-Jun-2023
      • (2022)Energy-Efficient Database Systems: A Systematic SurveyACM Computing Surveys10.1145/353822555:6(1-53)Online publication date: 7-Dec-2022
      • (2021)An Energy-Efficient Stream Join for the Internet of ThingsProceedings of the 17th International Workshop on Data Management on New Hardware10.1145/3465998.3466005(1-6)Online publication date: 20-Jun-2021

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media