Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

EvoComposer: : An Evolutionary Algorithm for 4-Voice Music Compositions

Published: 01 September 2020 Publication History

Abstract

Evolutionary algorithms mimic evolutionary behaviors in order to solve problems. They have been successfully applied in many areas and appear to have a special relationship with creative problems; such a relationship, over the last two decades, has resulted in a long list of applications, including several in the field of music. In this article, we provide an evolutionary algorithm able to compose music. More specifically we consider the following 4-voice harmonization problem: one of the 4 voices (which are bass, tenor, alto, and soprano) is given as input and the composer has to write the other 3 voices in order to have a complete 4-voice piece of music with a 4-note chord for each input note. Solving such a problem means finding appropriate chords to use for each input note and also finding a placement of the notes within each chord so that melodic concerns are addressed. Such a problem is known as the unfigured harmonization problem. The proposed algorithm for the unfigured harmonization problem, named EvoComposer, uses a novel representation of the solutions in terms of chromosomes (that allows to handle both harmonic and nonharmonic tones), specialized operators (that exploit musical information to improve the quality of the produced individuals), and a novel hybrid multiobjective evaluation function (based on an original statistical analysis of a large corpus of Bach's music). Moreover EvoComposer is the first evolutionary algorithm for this specific problem. EvoComposer is a multiobjective evolutionary algorithm, based on the well-known NSGA-II strategy, and takes into consideration two objectives: the harmonic objective, that is finding appropriate chords, and the melodic objective, that is finding appropriate melodic lines. The composing process is totally automatic, without any human intervention. We also provide an evaluation study showing that EvoComposer outperforms other metaheuristics by producing better solutions in terms of both well-known measures of performance, such as hypervolume, Δ index, coverage of two sets, and standard measures of music creativity. We conjecture that a similar approach can be useful also for similar musical problems.

References

[1]
Agres, K., Forth, J., and Wiggins, G. A. (2016). Evaluation of musical creativity and musical metacreation systems. <italic>Computers in Entertainment</italic>, 14(3):3:1-3:33.
[2]
Amabile, T. M. (1982). The social psychology of creativity: A consensual assessment technique. <italic>Journal of Personality and Social Psychology</italic>, 43(5):997-1013.
[3]
Amabile, T. M. (1996). <italic>Creativity in context</italic>. Nashville, TN: Westview Press.
[4]
Anders, T., and Miranda, E. R. (2008). Constraint-based composition in realtime. In <italic>Proceedings of the 2008 International Computer Music Conference</italic>.
[5]
Anders, T., and Miranda, E. R. (2011). Constraint programming systems for modeling music theories and composition. <italic>ACM Computing Surveys</italic>, 43(4):30:1-30:38.
[6]
Assayag, G., Rueda, C., Laurson, M., Agon, C., and Delerue, O. (1999). Computer-assisted composition at IRCAM: From PatchWork to OpenMusic. <italic>Computer Music Journal</italic>, 23(3):59- 72.
[7]
Auh, M.-S. (1997). Prediction of musical creativity in composition among selected variables for upper elementary students. <italic>Bulletin of the Council for Research in Music Education</italic> (133):1-8.
[8]
Baer, J., Kaufman, J. C., and Gentile, C. A. (2004). Extension of the consensual assessment technique to nonparallel creative products. <italic>Creativity Research Journal</italic>, 16(1):113-117.
[9]
Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A simulated annealing-based multiobjective optimization algorithm: Amosa. <italic>IEEE Transactions on Evolutionary Computation</italic>, 12(3):269-283.
[10]
Bentley, P. J. (2000). Exploring component-based representations--The secret of creativity by evolution? In I. Parmee (Ed.), <italic>Evolutionary design and manufacture</italic>, pp. 161-172. London: Springer.
[11]
Boden, M. A. (1994). Creativity: A framework for research. <italic>Behavioral and Brain Sciences</italic>, 17(3):558- 570.
[12]
Boden, M. A. (1998). Creativity and artificial intelligence. <italic>Artificial Intelligence</italic>, 103(1):347-356.
[13]
Boden, M. A. (2009). Mind as machine (extract) and the creative mind: Myths and mechanisms (extract). In M. Boden, M. D'Inverno, and J. McCormack (Eds.), <italic>Computational creativity: An interdisciplinary approach</italic>, number 09291 in Dagstuhl Seminar Proceedings. Dagstuhl, Germany: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Germany.
[14]
Buck, P. C. (1922). <italic>Unfigured harmony: A short treatise on modulation, harmonization of melodies, unfigured basses, inner melodies, canons and ground basses</italic>. Oxford: Clarendon Press.
[15]
Chuan, C.-H., and Chew, E. (2007). A hybrid system for automatic generation of style-specific accompaniment. In <italic>Proceedings of the 4th International Joint Workshop on Computational Creativity</italic>, pp. 57-64.
[16]
Coello, C. A. C., and Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In <italic>Proceedings of the Conference on Evolutionary Computation</italic>, Vol. 2, pp. 1051-1056.
[17]
Cope, D. (1996). <italic>Experiments in musical intelligence</italic>. Middleton, WI: A-R Editions.
[18]
Cope, D. (2000). <italic>The algorithmic composer</italic>. Middleton, WI: A-R Editions.
[19]
Cope, D., and Hofstadter, D. R. (2004).<italic>Virtual music: Computer synthesis of musical style</italic>. Cambridge, MA: MIT Press.
[20]
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. <italic>Psychometrika</italic>, 16(3):297-334.
[21]
De Prisco, R., Eletto, A., Torre, A., and Zaccagnino, R. (2010). A neural network for bass functional harmonization. In <italic>Proceedings of Applications of Evolutionary Computation, Part II</italic>, pp. 351-360.
[22]
De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2010). EvoBassComposer: A multi-objective genetic algorithm for 4-voice compositions. In <italic>Proceedings of Genetic and Evolutionary Computation Conference (GECCO)</italic>, pp. 817-818.
[23]
De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2011a). A genetic algorithm for dodecaphonic compositions. In <italic>Proceedings of Applications of Evolutionary Computation</italic>, pp. 244-253.
[24]
De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2011b). A multi-objective differential evolution algorithm for 4-voice compositions. In <italic>2011 IEEE Symposium on Differential Evolution</italic>, pp. 65- 72.
[25]
De Prisco, R., and Zaccagnino, R. (2009). An evolutionary music composer algorithm for bass harmonization. In <italic>EvoWorkshops</italic>, pp. 567-572. Lecture Notes in Computer Science, Vol. 5484.
[26]
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). Afast and elitist multiobjective genetic algorithm: NSGA-II. <italic>Transactions in Evolutionary Computation</italic>, 6(2):182-197.
[27]
Donnelly, P., and Sheppard, J. (2011). Evolving four-part harmony using genetic algorithms. In <italic>EvoApplications 2011, Part II</italic>, pp. 273-282, Berlin, Heidelberg: Springer.
[28]
Ebcioglu, K. (1986). An expert system for harmonizing four-part chorales. In <italic>Proceedings of the 1986 International Computer Music Conference</italic>.
[29]
Evans, B. L., Fukayama, S., Goto, M., Munekata, N., and Ono, T. (2014). Autochoruscreator: Fourpart chorus generator with musical feature control, using search spaces constructed from rules of music theory. In <italic>Proceedings of the International Computer Music Conference</italic>.
[30]
Fonseca, C.M., and Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In <italic>Proceedings of the 5th International Conference on Genetic Algorithms</italic>, pp. 416-423.
[31]
Fonseca, C. M., and Fleming, P. J. (1995). An overview of evolutionary algorithms in multiobjective optimization. <italic>Evolutionary Computation</italic>, 3(1):1-16.
[32]
Fux, J. J., and Mann, A. (1965). <italic>The study of counterpoint from Johann Joseph Fuxs Gradus Ad Parnassum--1725</italic>. New York: Norton.
[33]
Gang, D., Lehmann, D., and Wagner, N. (1997). Harmonizing melodies in real-time: The connectionist approach. In <italic>Proceedings of the International Computer Music Association</italic>, pp. 27-31.
[34]
Gartland-Jones, A., and Copley, P. (2003). The suitability of genetic algorithms for musical composition. <italic>Contemporary Music Review</italic>, 22(3):43-55.
[35]
Geis, M., and Middendorf, M. (2007). An ant colony optimizer for melody creation with baroque harmony. In <italic>Proceedings of the IEEE Congress on Evolutionary Computation</italic>, pp. 461- 468.
[36]
Gimenes, M., Miranda, E. R., and Johnson, C. (2005). Towards an intelligent rhythmic generator based on given examples: A memetic approach. In <italic>Digital Music Research Network Summer Conference</italic>, pp. 41-46.
[37]
Goldberg, D. E. (1989). <italic>Genetic algorithms in search, optimization and machine learning</italic>, 1st ed. Boston: Addison-Wesley.
[38]
Goldberg, D. E. (2002). <italic>The design of innovation: Lessons from and for competent genetic algorithms</italic>. Norwell, MA: Kluwer.
[39]
Hansen, M. P. (1997). Tabu search for multiobjective optimization: MOTS. In <italic>Proceedings of the Thirteenth International Conference on Multiple Criteria Decision Making</italic>, pp. 6-10.
[40]
Hastings, E. J., Guha, R. K., and Stanley, K. O. (2009). Automatic content generation in the galactic arms race video game. <italic>IEEE Transactions on Computational Intelligence and AI in Games</italic>, 1(4):245-263.
[41]
Hennessey, B. A., and Amabile, T. M. (2010). Creativity. <italic>Annual Review of Psychology</italic>, 61(1):569- 598.
[42]
Herremans, D., and S&#246;rensen, K. (2013). FuX, an android app that generates counterpoint. In <italic>IEEE Symposium on Computational Intelligence for Creativity and Affective Computing</italic>, pp. 48- 55.
[43]
Hickey, M. (1999). Assessment rubrics for music composition. <italic>Music Educators Journal</italic>, 85(4):26- 33.
[44]
Hickey, M. (2001). An application of AMABILE's consensual assessment technique for rating the creativity of children's musical compositions. <italic>Journal of Research in Music Education</italic>, 49(3):234-244.
[45]
Hiller, L. A., and Isaacson, L. M. (1958). Musical composition with a high-speed digital computer. <italic>Journal of the Audio Engineering Society</italic>, 6(3):154-160.
[46]
Hofmann, D. M. (2015). A genetic programming approach to generating musical compositions. In <italic>4th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design</italic>, pp. 89-100. Lecture Notes in Computer Science, Vol. 9027.
[47]
Holland, J. H. (1975). <italic>Adaptation in natural and artificial systems</italic>. Ann Arbor, MI: The University of Michigan Press.
[48]
Horner, A., and Ayers, L. (1995). Harmonization of musical progressions with genetic algorithms. In <italic>International Computer Music Conference</italic>.
[49]
Jacob, B. L. (1994). Composing with genetic algorithms. Technical Report. University ofMichigan.
[50]
Jensen, J. H. (2011). Evolutionary music composition: A quantitative approach. Masters thesis. Institutt for datateknikk og informasjons vitenskap.
[51]
Jeong, J., Kim, Y., and Ahn, C. W. (2017). A multi-objective evolutionary approach to automatic melody generation. <italic>Expert Systems Applications</italic>, 90(C):50-61.
[52]
Kimbrough, S. O., Koehler, G. J., Lu, M., and Wood, D. H. (2008). On a feasible-infeasible two-population (FI-2pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch. <italic>European Journal of Operational Research</italic>, 190(2):310-327.
[53]
Langheinrich, M. (2001). Privacy by design? Principles of privacy-aware ubiquitous systems. In <italic>International Conference on Ubiquitous Computing</italic>, pp. 273-291.
[54]
Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., ... et al. (2018). The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities. <italic>CoRR</italic>. Retrieved from http://arxiv.org/abs/1803.03453
[55]
Liu, C. H., and Ting, C. K. (2015). Music pattern mining for chromosome representation in evolutionary composition. In <italic>2015 IEEE Congress on Evolutionary Computation</italic>, pp. 2145-2152.
[56]
Lopes, H. B., Martins, F. V. C., Cardoso, R. T. N., and dos Santos, V. F. (2017). Combining rules and proportions: A multiobjective approach to algorithmic composition. In <italic>2017 IEEE Congress on Evolutionary Computation</italic>, pp. 2282-2289.
[57]
Lubart, T., Pacteau, C., Jacquet, A.-Y., and Caroff, X. (2010). Children's creative potential: An empirical study of measurement issues. <italic>Learning and Individual Differences</italic>, 20(4):388-392.
[58]
Meli&#225;n, B., Moreno, J., and Moreno, J. (2003). Metaheur&#237;sticas: Una visi&#243;n global. <italic>Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial</italic>, 7(19):7-28.
[59]
Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. <italic>INFORMS Journal on Computing</italic>, 20(3):451-471.
[60]
Miranda, E. R. (2000). On the music of emergent behaviour: What can evolutionary computation bring to the musician? In <italic>Conference on Genetic and Evolutionary Computation (GECCO)</italic>, pp. 140-142.
[61]
Miranda, E. R. (2001). <italic>Composing music with computers (music technology)</italic>. Waltham, MA: Focal Press.
[62]
Miranda, E. R. (2003).On the evolution of music in a society of self-taught digital creatures. <italic>Digital Creativity</italic>, 14(1):29-42.
[63]
Miranda, E. R., and Biles, J. A. (2007). <italic>Evolutionary computer music</italic>. Berlin, Heidelberg: Springer.
[64]
Moore, A. F. (2001). Categorical conventions in music discourse: Style and genre. In <italic>Music &#38; Letters</italic>, Vol. 82, pp. 432-442.
[65]
Moray, A., and Christopher, K. I. W. (2004). Harmonising chorales by probabilistic inference. In L. K. Saul, Y. Weiss, and L. Bottou (Eds.), <italic>Advances in neural information processing systems</italic>, pp. 25-32. Cambridge, MA: MIT Press.
[66]
Mu&#241;oz, E., Cadenas, J.M., Ong, Y. S., and Acampora, G. (2016). Memetic music composition. <italic>IEEE Transactions on Evolutionary Computation</italic>, 20(1):1-15.
[67]
Nguyen, A., Yosinski, J., and Clune, J. (2015). Innovation engines: Automated creativity and improved stochastic optimization via deep learning. In <italic>Proceedings of the 2015 Conference on Genetic and Evolutionary Computation (GECCO)</italic>.
[68]
Papadopoulos, G., and Wiggins, G. (1998). A genetic algorithm for the generation of jazz melodies. In <italic>Proceedings of STEP 98</italic>, pp. 7-9.
[69]
Parisi, M. (2013). Un analizzatore armonico automatico per composizioni musicali a 4 parti. Thesis (in Italian). Retrieved from http://music.di.unisa.it/Musimatica/Download_files/tesi-parisi.pdf
[70]
Pearce, M., and Wiggins, G. (2001). Towards a framework for the evaluation of machine compositions. In <italic>Proceedings of the AISB Symposium on AI and Creativity in Arts and Science</italic>, pp. 22-32.
[71]
Phon-Amnuaisuk, S., Smaill, A., and Wiggins, G. (2006). Chorale harmonization: A view from a search control perspective. <italic>Journal of New Music Research</italic>, 35(4):279-305.
[72]
Phon-Amnuaisuk, S., and Wiggins, G. A. (1999). The four-part harmonization problem: A comparison between genetic algorithms and a rule-based system. In <italic>AISB99 Symposium on Musical Creativity</italic>.
[73]
Piston, W., and DeVoto, M. (1987). <italic>Harmony</italic>. New York: Norton.
[74]
Risi, S., Lehman, J., D'Ambrosio, D., Hall, R., and Stanley, K. (2015). Petalz: Search-based procedural content generation for the casual gamer. <italic>Transactions on Computational Intelligence in Games</italic>, 8:244-255.
[75]
Runco, M. A. (2004). Creativity. <italic>Annual Review of Psychology</italic>, 55(1):657-687.
[76]
Schottstaedt, B. (1984). Automatic species counterpoint. Technical Report. CCRMA, Stanford, CA.
[77]
Scirea, M., Togelius, J., Eklund, P. W., and Risi, S. (2016). Metacompose: A compositional evolutionary music composer. In <italic>Proceedings of the 5th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design</italic>, pp. 202-217.
[78]
Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). <italic>Biometrika</italic>, 52(3/4):591-611.
[79]
Towsey, M. W., Brown, A. R., Wright, S. K., and Diederich, J. (2001). Towards melodic extension using genetic algorithms. <italic>Educational Technology &#38; Society</italic>, 4(2):54-65.
[80]
Wiggins, G., Papadopoulos, G., Phon-amnuaisuk, S., and Tuson, A. (1998). Evolutionary methods for musical composition. In <italic>International Journal of Computing Anticipatory Systems</italic>.
[81]
Wiggins, G. A. (2006). Searching for computational creativity. <italic>New Generation Computing</italic>, 24(3):209-222.
[82]
Zaccagnino, R. (2012). Music composition algorithms and musical gestures recognition. PhD thesis. Retrieved from http://music.di.unisa.it/Musimatica/Download_files/RoccoZaccagninoTesi.pdf
[83]
Zipf, G. K. (1949). <italic>Human behaviour and the principle of least effort</italic>. Reading, MA: Addison-Wesley.
[84]
Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. <italic>Transactions in Evolutionary Computation</italic>, 3(4):257- 271.

Cited By

View all

Index Terms

  1. EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Evolutionary Computation
      Evolutionary Computation  Volume 28, Issue 3
      Fall 2020
      190 pages
      ISSN:1063-6560
      EISSN:1530-9304
      Issue’s Table of Contents

      Publisher

      MIT Press

      Cambridge, MA, United States

      Publication History

      Published: 01 September 2020
      Published in EVOL Volume 28, Issue 3

      Author Tags

      1. Evolutionary algorithms
      2. automatic music composition
      3. evolutionary music.

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)8
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 27 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Algorithmic composition for pop songs based on lyrics emotion retrievalMultimedia Tools and Applications10.1007/s11042-022-12408-y81:9(12421-12440)Online publication date: 1-Apr-2022
      • (2022)Creative DNA computing: splicing systems for music compositionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-06828-z26:18(9689-9706)Online publication date: 1-Sep-2022
      • (2022)Evolutionary Approach to Melodic Line HarmonizationArtificial Intelligence and Soft Computing10.1007/978-3-031-23492-7_20(230-241)Online publication date: 19-Jun-2022
      • (2022)Human-Level Melodic Line HarmonizationComputational Science – ICCS 202210.1007/978-3-031-08751-6_2(17-30)Online publication date: 21-Jun-2022
      • (2021)Providing music service in Ambient IntelligenceExpert Systems with Applications: An International Journal10.1016/j.eswa.2021.114951177:COnline publication date: 1-Sep-2021

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media