Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Stylization and abstraction of photographs

Published: 01 July 2002 Publication History

Abstract

Good information design depends on clarifying the meaningful structure in an image. We describe a computational approach to stylizing and abstracting photographs that explicitly responds to this design goal. Our system transforms images into a line-drawing style using bold edges and large regions of constant color. To do this, it represents images as a hierarchical structure of parts and boundaries computed using state-of-the-art computer vision. Our system identifies the meaningful elements of this structure using a model of human perception and a record of a user's eye movements in looking at the photo; the system renders a new image using transformations that preserve and highlight these visual elements. Our method thus represents a new alternative for non-photorealistic rendering both in its visual style, in its approach to visual form, and in its techniques for interaction.

References

[1]
AGRAWALA, M., AND STOLTE, C. 2001. Rendering effective route maps: improving usability through generalization. In Proc. of ACM SIGGRAPH 2001, 241-249.
[2]
AHUJA, N. 1996. A transform for multiscale image segmentation by integrated edge and region detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 12, 1211-1235.
[3]
BURT, P., AND ADELSON, E. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications 31, 4, 532-540.
[4]
CAMPBELL, F., AND ROBSON, J. 1968. Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551-566.
[5]
CHRISTOUDIAS, C., GEORGESCU, B., AND MEER, P. 2002. Synergism in low level vision. In Proc. ICPR 2002.
[6]
COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 5.
[7]
CURTIS, C. 1999. Non-photorealistic animation. In ACM SIGGRAPH 1999 Course Notes #17 (Section 9).
[8]
DEUSSEN, O., AND STROTHOTTE, T. 2000. Computer-generated pen-and-ink illustration of trees. In Proc. of ACM SIGGRAPH 2000, 13-18.
[9]
DUCHOWSKI, A., AND VERTEGAAL, R. 2000. Eye-based interaction in graphical systems: Theory and practice. In ACM SIGGRAPH 2000 Course Notes #5.
[10]
DUCHOWSKI, A. 2000. Acuity-matching resolution degradation through wavelet coefficient scaling. IEEE Trans. on Image Processing 9, 8 (Aug.), 1437-1440.
[11]
DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU, F., AND DORSEY, J. 2001. Decoupling strokes and high-level attributes for interactive traditional drawing. In Proceedings of the 12th Eurographics Workshop on Rendering, 71-82.
[12]
FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution curves. In Proc. of ACM SIGGRAPH 94, 261-268.
[13]
FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1997. Computer Graphics: Principles and Practice, 2nd edition. Addison Wesley.
[14]
GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K Peters.
[15]
GOOCH, A. A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proc. of ACM SIGGRAPH 98, 447-452.
[16]
HAEBERLI, P. 1990. Paint by numbers: Abstract image representations. In Proc. of ACM SIGGRAPH 90, 207-214.
[17]
HANDFORD, M. 1987. Where's Waldo? Little, Brown and Company.
[18]
HENDERSON, J. M., AND HOLLINGWORTH, A. 1998. Eye movements during scene viewing: An overview. In Eye Guidance in Reading and Scene Perception, G. Underwood, Ed. Elsevier Science Ltd., 269-293.
[19]
HERMAN, I., AND DUKE, D. 2001. Minimal graphics. IEEE Computer Graphics and Applications 21, 6, 18-21.
[20]
HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In Proc. of ACM SIGGRAPH 2000, 517-526.
[21]
HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In Proc. of ACM SIGGRAPH 98, 453-460.
[22]
HERTZMANN, A. 2001. Paint by relaxation. In Computer Graphics International, 47-54.
[23]
HOFFMAN, D. D. 1998. Visual intelligence: how we create what we see. Norton.
[24]
JUST, M. A., AND CARPENTER, P. A. 1976. Eye fixations and cognitive processes. Cognitive Psychology 8, 441-480.
[25]
KELLY, D. 1984. Retinal inhomogenity: I. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 74, 1, 107-113.
[26]
KOENDERINK, J. J., M. A. BOUMAN, A. B. D. M., AND SLAPPENDEL, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. the far peripheral visual field (eccentricity 0-50). Journal of the Optical Society of America A 68, 6, 850-854.
[27]
KOENDERINK, J. J. 1984. The structure of images. Biological Cybernetics 50, 363-370.
[28]
KOENDERINK, J. J. 1984. What does the occluding contour tell us about solid shape? Perception 13, 321-330.
[29]
KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999. Art-based rendering of fur, grass, and trees. In Proc. of ACM SIGGRAPH 99, 433-438.
[30]
LEYTON, M. 1992. Symmetry, causality, mind. MIT Press.
[31]
LINDEBERG, T. 1994. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers.
[32]
LITWINOWICZ, P. 1997. Processing images and video for an impressionist effect. In Proc. of ACM SIGGRAPH 97, 407-414.
[33]
MACKWORTH, N., AND MORANDI, A. 1967. The gaze selects informative details within pictures. Perception and Psychophysics 2, 547-552.
[34]
MANNOS, J. L., AND SAKRISON, D. J. 1974. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. on Information Theory 20, 4, 525-536.
[35]
MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic rendering. In Proc. of ACM SIGGRAPH 97, 415-420.
[36]
MARR, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco.
[37]
MEER, P., AND GEORGESCU, B. 2001. Edge detection with embedded confidence. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 12, 1351-1365.
[38]
PATTANAIK, S. N., FERWERDA, J. A., FAIRCHILD, M. D., AND GREENBERG, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of ACM SIGGRAPH 98, 287-298.
[39]
REDDY, M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 21, 5 (September/October), 68-75.
[40]
REGAN, D. 2000. Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion and Binocular Disparity. Sinauer.
[41]
ROVAMO, J., AND VIRSU, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495-510.
[42]
SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-D shapes. In Proc. of ACM SlGGRAPH 90, 197-206.
[43]
SANTELLA, A., AND DECARLO, D. 2002. Abstracted painterly renderings using eye-tracking data. In Proc. of the Second International Symp. on Non-photorealistic Animation and Rendering (NPAR).
[44]
SHIRAISHI, M., AND YAMAGUCHI, Y. 2000. An algorithm for automatic painterly rendering based on local source image approximation. In Proc. of the First International Symp. on Non-photorealistic Animation and Rendering (NPAR), 53-58.
[45]
SIBERT, L. E., AND JACOB, R. J. K. 2000. Evaluation of eye gaze interaction. In Proc. CHI 2000, 281-288.
[46]
TRUCCO, E., AND VERRI, A. 1998. Introductory Techniques for 3-D Computer Vision. Prentice-Hall.
[47]
TUFTE, E. R. 1990. Envisioning Information. Graphics Press.
[48]
VERTEGAAL, R. 1999. The gaze groupware system: Mediating joint attention in mutiparty communication and collaboration. In Proc. CHI '99, 294-301.
[49]
WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-generated pen-and-ink illustration. In Proc. of ACM SIGGRAPH 94, 91-100.
[50]
YARBUS, A. L. 1967. Eye Movements and Vision. Plenum Press.
[51]
ZEKI, S. 1999. Inner Vision: An Exploration of Art and the Brain. Oxford Univ. Press.

Cited By

View all
  • (2024)Fabricable 3D Wire ArtACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657453(1-11)Online publication date: 13-Jul-2024
  • (2024)Weighted and truncated image smoothing based on unsupervised learningThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03141-040:8(5871-5882)Online publication date: 1-Aug-2024
  • (2024)Non-photorealistic Halftoning by Mean Color-Preserving Contrast EnhancementICGG 2024 - Proceedings of the 21st International Conference on Geometry and Graphics10.1007/978-3-031-71013-1_7(67-76)Online publication date: 27-Sep-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 21, Issue 3
July 2002
548 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/566654
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2002
Published in TOG Volume 21, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. eye-tracking
  2. image simplification
  3. non-photorealistic rendering
  4. visual perception

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)91
  • Downloads (Last 6 weeks)14
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Fabricable 3D Wire ArtACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657453(1-11)Online publication date: 13-Jul-2024
  • (2024)Weighted and truncated image smoothing based on unsupervised learningThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03141-040:8(5871-5882)Online publication date: 1-Aug-2024
  • (2024)Non-photorealistic Halftoning by Mean Color-Preserving Contrast EnhancementICGG 2024 - Proceedings of the 21st International Conference on Geometry and Graphics10.1007/978-3-031-71013-1_7(67-76)Online publication date: 27-Sep-2024
  • (2023)Algorithmic Analysis of Color Combinations Principle in Game Concept ArtThe Journal of the Society for Art and Science10.3756/artsci.22.15_122:4(15_1-15_7)Online publication date: 2023
  • (2023)Where Do People Draw Lines?Seminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596756(409-419)Online publication date: 1-Aug-2023
  • (2023)Img2Logo: Generating Golden Ratio Logos from ImagesComputer Graphics Forum10.1111/cgf.1474242:2(37-49)Online publication date: 23-May-2023
  • (2023)A Method for Determining the Subjective Dominant Color of an Image Region by Support Vector Regression2023 Nicograph International (NicoInt)10.1109/NICOINT59725.2023.00010(1-6)Online publication date: Jun-2023
  • (2022)Recolorable Posterization of Volumetric Radiance Fields Using Visibility‐Weighted Palette ExtractionComputer Graphics Forum10.1111/cgf.1459441:4(149-160)Online publication date: 30-Jul-2022
  • (2022)Fast Text Placement Scheme for ASCII Art SynthesisIEEE Access10.1109/ACCESS.2022.316756710(40677-40686)Online publication date: 2022
  • (2022)Structure-aware bottle cap artComputers and Graphics10.1016/j.cag.2022.08.004107:C(277-288)Online publication date: 1-Oct-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media