Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Comparative Cross-layer Study on Racetrack Memories: Domain Wall vs Skyrmion

Published: 03 October 2019 Publication History

Abstract

Racetrack memory (RM), a new storage scheme in which information flows along a nanotrack, has been considered as a potential candidate for future high-density storage device instead of hard disk drive (HDD). The first RM technology, which was proposed in 2008 by IBM, relies on a train of opposite magnetic domains separated by domain walls (DWs), named DW-RM. After 10 years of intensive research, a variety of fundamental advancements has been achieved; unfortunately, no product has been available until now. With increasing effort and resources dedicated to the development of DW-RM, it is likely that new materials and mechanisms will soon be discovered for practical applications. However, new concepts might also be on the horizon. Recently, an alternative information carrier, magnetic skyrmion, which was experimentally discovered in 2009, has been regarded as a promising replacement of DW for RM, named skyrmion-based RM (SK-RM). Intensive effort has been involved and amazing advances have been made in observing, writing, manipulating, and deleting individual skyrmions. So, what is the relationship between DW and skyrmion? What are the key differences between DW and skyrmion, or between DW-RM and SK-RM? What benefits could SK-RM bring and what challenges need to be addressed before application? In this review article, we intend to answer these questions through a comparative cross-layer study between DW-RM and SK-RM. This work will provide guidelines, especially for circuit and architecture researchers on RM.

References

[1]
C. Chappert, A. Fert, and F. N. Van Dau. 2007. The emergence of spin electronics in data storage. Nat. Mat., 6, 11 (2007), 813--823.
[2]
S. Parkin and S.-H. Yang. 2015. Memory on the racetrack. Nat. Nan. 10, 3 (2015), 195--198.
[3]
S. S. P. Parkin, M. Hayashi, and L. Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320, 5873 (2008), 190--194.
[4]
A. Fert, V. Cros, and J. Sampaio. 2013. Skyrmions on the track. Nat. Nan. 8, 3 (2013), 152--156.
[5]
S. Krause and R. Wiesendanger. 2016. Spintronics: Skyrmionics gets hot. Nat. Mat. 15, 5 (2016), 493--494.
[6]
S. Fukami, T. Suzuki, Y. Nakatani, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, and H. Ohno. 2011. Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl. Phys. Lett. 98, 8 (2011), 082504.
[7]
I. M. Miron, T. Moore, and H. Szambolics. 2011. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mat. 10, 6 (2011), 419--423.
[8]
K.-S. Ryu, L. Thomas, S.-H. Yang, and S. Parkin. 2013. Chiral spin torque at magnetic domain walls. Nat. Nan. 8, 7 (2013), 527--533.
[9]
K.-S. Ryu, L. Thomas, S.-H. Yang, and S. S. P. Parkin. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Exp. 5, 9 (2012), 093006.
[10]
S. Yang, K.-S. Ryu, and S. Parkin. 2015. Domain-wall velocities of up to 750 ms−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nan. 10, 3 (2015), 221--226.
[11]
S. Mühlbauer, B. Binz, and F. Jonietz. 2009. Skyrmion lattice in a chiral magnet. Science 323, 5916 (2009), 915--919.
[12]
R. Wiesendanger. 2016. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mat. 1, 7 (2016), 16044.
[13]
A. Fert, R. Nicolas, and C. Vincent. 2017. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mat. 2, 7 (2017), 17031.
[14]
W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao. 2016. Skyrmion-electronics: An overview and outlook. Proc. IEEE 104, 10 (2016), 2040--2061.
[15]
N. Nagaosa and Y. Tokura. 2013. Topological properties and dynamics of magnetic skyrmions. Nat. Nan. 8, 12 (2013), 899--911.
[16]
W. Jiang, G. Chen, and K. Liu. 2017. Chiral magnetic skyrmions in thin films. Phys. Rep. 704 (2017), 1--49.
[17]
A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos. 2016. Emergent phenomena induced by spin--Orbit coupling at surfaces and interfaces. Nature 539, 7630 (2016), 509--517.
[18]
J. Sampaio, V. Cros, and S. Rohart. 2013. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nan. 8, 11 (2013), 839--844.
[19]
X. Zhang, Y. Zhou, M. Ezawa, G. P. Zhao, and W. Zhao. 2015. Magnetic skyrmion transistor: Skyrmion motion in a voltage-gated nanotrack. Sci. Rep. 5 (2015), 11369.
[20]
F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim. 2016. A skyrmion-based spin-torque nano-oscillator. New J. Phys. 18, 7 (2016), 075011.
[21]
X. Zhang, E. Motohiko, and Y. Zhou. 2015. Magnetic skyrmion logic gates: Conversion, duplication, and merging of skyrmions. Sci. Rep. 5 (2015), 9400.
[22]
Y. Huang, W. Kang, X. Zhang, Y. Zhou, and W. Zhao. 2017. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 8 (2017), 08LT02.
[23]
S. Li, W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao. 2017. Magnetic skyrmion-based artificial neuron device. Nanotechnology 28, 31 (2017), 31LT01.
[24]
X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao. 2018. A compact skyrmionic leaky--integrate--fire spiking neuron device. Nanoscale 10, 12 (2018), 6139--6146.
[25]
W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, and W. Zhao. 2016. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 6, (2016) 23164.
[26]
R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio. 2014. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, (2014) 6784.
[27]
W. Koshibae, Y. Kaneko, J. Iwasaki, M. Kawasaki, Y. Tokura, and N. Nagaosa. 2015. Memory functions of magnetic skyrmions. Japanese J. Appl. Phys. 54, 5 (2015), 053001.
[28]
R. Tomasello, V. Puliafito, E. Martinez, A. Manchon, M. Ricci, M. Carpentieri, and G. Finocchio. 2017. Performance of synthetic antiferromagnetic racetrack memory: Domain wall versus skyrmion. J. Phys. D: Appl. Phys. 50, 32 (2017), 325302.
[29]
Y. Zhou and M. Ezawa. 2014. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5 (2014), 4652.
[30]
W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. te Velthuis, and A. Hoffmann. 2015. Blowing magnetic skyrmion bubbles. Science 349, 6245 (2015), 283--286.
[31]
W. Kang, C. Zheng, Y. Huang, X. Zhang, W. Lv, Y. Zhou, and W. Zhao. 2017. Compact modeling and evaluation of magnetic skyrmion-based racetrack memory. IEEE Trans. Elect. Dev. 64, 3 (2017), 1060--1068.
[32]
X. Zhang, Y. Zhou, and M. Ezawa. 2016. Magnetic bilayer-skyrmions without skyrmion hall effect. Nat. Commun. 7 (2016), 10293.
[33]
W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. B. Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, and S. G. E. te Velthuis. 2017. Direct observation of the skyrmion hall effect. Nat. Phys. 13, 2 (2017), 162--169.
[34]
K. Litzius, I. Lemesh, and B. Krüger. 2017. Skyrmion hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 2 (2017), 170--175.
[35]
I. Purnama, W. L. Gan, D. W. Wong, and W. S. Lew. 2015. Guided current-induced skyrmion motion in 1D potential well. Sci. Rep. 5 (2015), 10620.
[36]
X. Zhang, G. P. Zhao, and H. Fangohr. 2015. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5 (2015), 7643.
[37]
D. Zhu, W. Kang, S. Li, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao. 2018. Skyrmion racetrack memory with random information update/deletion/insertion. IEEE Trans. Elect. Dev. 65, 1 (2018), 87--95.
[38]
S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, and L. You. 2018. Reconfigurable skyrmion logic gates. Nano Lett. 18, 2 (2018), 1180--1184
[39]
M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, C. Moutafis, and J. S. Friedman. 2018. Conservative skyrmion logic system. Retrieved from: ArXiv:1806.10337, 2018.
[40]
W. Kang, C. Zheng, Y. Huang, X. Zhang, Y. Zhou, W. Lv, and W. Zhao. 2016. Complementary skyrmion racetrack memory with voltage manipulation. IEEE Elect. Dev. Lett. 37, 7 (2016), 924--927.
[41]
X. Chen, W. Kang, D. Zhu, X. Zhang, N. Lei, Y. Zhang, Y. Zhou, and W. Zhao. 2018. Complementary skyrmion racetrack memory enables voltage-controlled local data update functionality. IEEE Trans. Elect. Dev. 65, 10 (2018), 4667--4673.
[42]
J. Müller. 2018. Magnetic skyrmions on a two-lane racetrack. New J. Phys. 19, 2 (2017), 025002.
[43]
D. M. Crum, M. Bouhassoune, J. Bouaziz, B. Schweflinghaus, S. Blügel, and S. Lounis. 2015. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, (2015), 8541.
[44]
C. Hanneken, F. Otte, and A. Kubetzka. 2015. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nan. 10, 12 (2015), 1039--1042.
[45]
R. Tomasello, M. Ricci, P. Burrascano, V. Puliafito, M. Carpentieri, and G. Finocchio. 2017. Electrical detection of single magnetic skyrmion at room temperature. AIP Adv. 7, 5 (2017), 056022.
[46]
X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. 2012. NVSim: A circuit-level performance, energy, and area model for emerging nonvolatile memory. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 31, 7 (2012), 994--1007
[47]
G. Wang, Y. Zhang, B. Zhang, B. Wu, J. Nan, X. Zhang, Z. Zhang, J. Klein, D. Ravelosona, Z. Wang, Y. Zhang, and W. Zhao. 2018. Ultra-dense ring-shaped racetrack memory cache design. IEEE Trans. Circ. Syst. I: Reg. Pap. 65, 1 (2018), 1--11.
[48]
N. Binkert, B. Beckmann, G. L. Black, S. K. Reinhardt, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. 2011. The gem5 simulator. ACM SIGARCH Comput. Arch. News 39, 2 (2011), 1--7.

Cited By

View all
  • (2024) Dzyaloshinskii-Moriya interaction and nontrivial spin textures in the Janus semiconductor monolayers Physical Review B10.1103/PhysRevB.110.094440110:9Online publication date: 27-Sep-2024
  • (2023)Granularity-Driven Management for Reliable and Efficient Skyrmion Racetrack MemoriesIEEE Transactions on Emerging Topics in Computing10.1109/TETC.2022.317180411:1(95-111)Online publication date: 1-Jan-2023
  • (2023)Optimizing Data Placement for Hybrid SRAM+Racetrack Memory SPM in Embedded SystemsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.318554842:3(847-859)Online publication date: Mar-2023
  • Show More Cited By

Index Terms

  1. A Comparative Cross-layer Study on Racetrack Memories: Domain Wall vs Skyrmion

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 16, Issue 1
      January 2020
      232 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/3365593
      • Editor:
      • Ramesh Karri
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 03 October 2019
      Accepted: 01 May 2019
      Revised: 01 March 2019
      Received: 01 November 2018
      Published in JETC Volume 16, Issue 1

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Spintronics
      2. domain wall (DW)
      3. magnetic skyrmion
      4. racetrack memory (RM)

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      • International Mobility Projects
      • National Key Technology Program of China
      • National Natural Science Foundation of China

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)133
      • Downloads (Last 6 weeks)28
      Reflects downloads up to 22 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024) Dzyaloshinskii-Moriya interaction and nontrivial spin textures in the Janus semiconductor monolayers Physical Review B10.1103/PhysRevB.110.094440110:9Online publication date: 27-Sep-2024
      • (2023)Granularity-Driven Management for Reliable and Efficient Skyrmion Racetrack MemoriesIEEE Transactions on Emerging Topics in Computing10.1109/TETC.2022.317180411:1(95-111)Online publication date: 1-Jan-2023
      • (2023)Optimizing Data Placement for Hybrid SRAM+Racetrack Memory SPM in Embedded SystemsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.318554842:3(847-859)Online publication date: Mar-2023
      • (2023)Magnetic domain walls: types, processes and applicationsJournal of Physics D: Applied Physics10.1088/1361-6463/ad056857:6(063001)Online publication date: 10-Nov-2023
      • (2023)Fabrication of highly oriented Mn4N/Pt epitaxial bilayer structure on MgO(001) for spintronics applicationsAIP Advances10.1063/5.016579113:10Online publication date: 16-Oct-2023
      • (2023)Ultralow Power and Shifting-Discretized Magnetic Racetrack Memory Device Driven by Chirality Switching and Spin CurrentACS Applied Materials & Interfaces10.1021/acsami.3c06447Online publication date: 15-Aug-2023
      • (2022)SMARTProceedings of the 59th ACM/IEEE Design Automation Conference10.1145/3489517.3530538(829-834)Online publication date: 10-Jul-2022
      • (2022)The Drift of Magnetic Vortices in a Random Field of Anchoring CentersIEEE Transactions on Magnetics10.1109/TMAG.2022.316000858:5(1-10)Online publication date: May-2022
      • (2022)When B-Tree Meets Skyrmion Memory: How Skyrmion Memory Affects an Indexing SchemeIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.319751941:11(3814-3825)Online publication date: 1-Nov-2022
      • (2022)MemUnison: A Racetrack-ReRAM-combined Pipeline Architecture for Energy-Efficient in-Memory CNNsIEEE Transactions on Computers10.1109/TC.2022.3148858(1-1)Online publication date: 2022
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media