Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Multi-Subject 3D Human Mesh Construction Using Commodity WiFi

Published: 06 March 2024 Publication History

Abstract

This paper introduces MultiMesh, a multi-subject 3D human mesh construction system based on commodity WiFi. Our system can reuse commodity WiFi devices in the environment and is capable of working in non-line-of-sight (NLoS) conditions compared with the traditional computer vision-based approach. Specifically, we leverage an L-shaped antenna array to generate the two-dimensional angle of arrival (2D AoA) of reflected signals for subject separation in the physical space. We further leverage the angle of departure and time of flight of the signal to enhance the resolvability for precise separation of close subjects. Then we exploit information from various signal dimensions to mitigate the interference of indirect reflections according to different signal propagation paths. Moreover, we employ the continuity of human movement in the spatial-temporal domain to track weak reflected signals of faraway subjects. Finally, we utilize a deep learning model to digitize 2D AoA images of each subject into the 3D human mesh. We conducted extensive experiments in real-world multi-subject scenarios under various environments to evaluate the performance of our system. For example, we conduct experiments with occlusion and perform human mesh construction for different distances between two subjects and different distances between subjects and WiFi devices. The results show that MultiMesh can accurately construct 3D human meshes for multiple users with an average vertex error of 4cm. The evaluations also demonstrate that our system could achieve comparable performance for unseen environments and people. Moreover, we also evaluate the accuracy of spatial information extraction and the performance of subject detection. These evaluations demonstrate the robustness and effectiveness of our system.

References

[1]
Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015. Capturing the human figure through a wall. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1--13.
[2]
Ankur Agarwal and Bill Triggs. 2005. Recovering 3D human pose from monocular images. IEEE transactions on pattern analysis and machine intelligence 28, 1 (2005), 44--58.
[3]
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. Scape: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers. 408--416.
[4]
Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J Black. 2016. Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In European conference on computer vision. Springer, 561--578.
[5]
Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. 2019. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF international conference on computer vision. 9157--9166.
[6]
Zhe Chen, Chao Cai, Tianyue Zheng, Jun Luo, Jie Xiong, and Xin Wang. 2021. Rf-based human activity recognition using signal adapted convolutional neural network. IEEE Transactions on Mobile Computing 22, 1 (2021), 487--499.
[7]
Cailian Deng, Xuming Fang, Xiao Han, Xianbin Wang, Li Yan, Rong He, Yan Long, and Yuchen Guo. 2020. IEEE 802.11 be Wi-Fi 7: New challenges and opportunities. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2136--2166.
[8]
Shuya Ding, Zhe Chen, Tianyue Zheng, and Jun Luo. 2020. RF-net: A unified meta-learning framework for RF-enabled one-shot human activity recognition. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 517--530.
[9]
Ruiyang Gao, Mi Zhang, Jie Zhang, Yang Li, Enze Yi, Dan Wu, Leye Wang, and Daqing Zhang. 2021. Towards position-independent sensing for gesture recognition with Wi-Fi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 2 (2021), 1--28.
[10]
John C Gower. 1975. Generalized procrustes analysis. Psychometrika 40 (1975), 33--51.
[11]
Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM computer communication review 41, 1 (2011), 53--53.
[12]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings in deep residual networks. In European conference on computer vision. Springer, 630--645.
[13]
Shanee Honig and Tal Oron-Gilad. 2018. Understanding and resolving failures in human-robot interaction: Literature review and model development. Frontiers in psychology 9 (2018), 861.
[14]
Donny Huang, Rajalakshmi Nandakumar, and Shyamnath Gollakota. 2014. Feasibility and limits of wi-fi imaging. In Proceedings of the 12th ACM conference on embedded network sensor systems. 266--279.
[15]
Wenjun Jiang, Hongfei Xue, Chenglin Miao, Shiyang Wang, Sen Lin, Chong Tian, Srinivasan Murali, Haochen Hu, Zhi Sun, and Lu Su. 2020. Towards 3D human pose construction using wifi. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. 1--14.
[16]
Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. 2018. End-to-end recovery of human shape and pose. In Proceedings of the IEEE conference on computer vision and pattern recognition. 7122--7131.
[17]
Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. 2019. Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In Proceedings of the IEEE/CVF international conference on computer vision. 2252--2261.
[18]
Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015. Spotfi: Decimeter level localization using wifi. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 269--282.
[19]
Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in context. In Computer Vision--ECCV 2014:13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740--755.
[20]
Jian Liu, Yingying Chen, Yan Wang, Xu Chen, Jerry Cheng, and Jie Yang. 2018. Monitoring vital signs and postures during sleep using WiFi signals. IEEE Internet of Things Journal 5, 3 (2018), 2071--2084.
[21]
Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry Cheng. 2015. Tracking vital signs during sleep leveraging off-the-shelf wifi. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. 267--276.
[22]
Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. 2015. SMPL: A skinned multi-person linear model. ACM transactions on graphics (TOG) 34, 6 (2015), 1--16.
[23]
Virtual Medicine. 2017. Human Anatomy VR. https://www.oculus.com/experiences/gear-vr/1658650407494367/.
[24]
Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed Elgharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and Christian Theobalt. 2020. XNect: Real-time multi-person 3D motion capture with a single RGB camera. Acm Transactions On Graphics (TOG) 39, 4 (2020), 82--1.
[25]
Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. 2022. Human mesh recovery from multiple shots. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1485--1495.
[26]
Yili Ren, Sheng Tan, Linghan Zhang, Zi Wang, Zhi Wang, and Jie Yang. 2020. Liquid Level Sensing Using Commodity WiFi in a Smart Home Environment. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1--30.
[27]
Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2016. General automatic human shape and motion capture using volumetric contour cues. In European conference on computer vision. Springer, 509--526.
[28]
Ralph Schmidt. 1986. Multiple emitter location and signal parameter estimation. IEEE transactions on antennas and propagation 34, 3 (1986), 276--280.
[29]
Leonid Sigal, Alexandru Balan, and Michael Black. 2007. Combined discriminative and generative articulated pose and non-rigid shape estimation. Advances in neural information processing systems 20 (2007).
[30]
Sheng Tan and Jie Yang. 2016. WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing. 201--210.
[31]
Fei Wang, Jinsong Han, Feng Lin, and Kui Ren. 2019. Wipin: Operation-free passive person identification using wi-fi signals. In 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 1--6.
[32]
Fei Wang, Sanping Zhou, Stanislav Panev, Jinsong Han, and Dong Huang. 2019. Person-in-WiFi: Fine-grained person perception using WiFi. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5452--5461.
[33]
Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu. 2014. E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th annual international conference on Mobile computing and networking. 617--628.
[34]
Yichao Wang, Yili Ren, Yingying Chen, and Jie Yang. 2022. Wi-Mesh: A WiFi Vision-based Approach for 3D Human Mesh Construction. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems. 362--376.
[35]
Yan Wang, Jie Yang, Hongbo Liu, Yingying Chen, Marco Gruteser, and Richard P Martin. 2013. Measuring human queues using WiFi signals. In Proceedings of the 19th annual international conference on Mobile computing & networking. 235--238.
[36]
Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and realtime tracking with a deep association metric. In 2017 IEEE international conference on image processing (ICIP). IEEE, 3645--3649.
[37]
Chenshu Wu, Beibei Wang, Oscar C Au, and KJ Ray Liu. 2022. Wi-fi can do more: toward ubiquitous wireless sensing. IEEE Communications Standards Magazine 6, 2 (2022), 42--49.
[38]
Yaxiong Xie, Zhenjiang Li, and Mo Li. 2015. Precise power delay profiling with commodity WiFi. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. 53--64.
[39]
Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2019. mD-Track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking. In The 25th Annual International Conference on Mobile Computing and Networking. 1--16.
[40]
Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. 2015. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. 537--549.
[41]
Hongfei Xue, Yan Ju, Chenglin Miao, Yijiang Wang, Shiyang Wang, Aidong Zhang, and Lu Su. 2021. mmMesh: Towards 3D real-time dynamic human mesh construction using millimeter-wave. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services. 269--282.
[42]
Youwei Zeng, Dan Wu, Jie Xiong, Jinyi Liu, Zhaopeng Liu, and Daqing Zhang. 2020. MultiSense: Enabling multi-person respiration sensing with commodity wifi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 3 (2020), 1--29.
[43]
Mingmin Zhao, Yingcheng Liu, Aniruddh Raghu, Tianhong Li, Hang Zhao, Antonio Torralba, and Dina Katabi. 2019. Through-wall human mesh recovery using radio signals. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10113--10122.
[44]
Xiuyuan Zheng, Hongbo Liu, Jie Yang, Yingying Chen, Richard P Martin, and Xiaoyan Li. 2013. A study of localization accuracy using multiple frequencies and powers. IEEE Transactions on Parallel and Distributed Systems 25, 8 (2013), 1955--1965.

Cited By

View all
  • (2024)SpaceBeat: Identity-aware Multi-person Vital Signs Monitoring Using Commodity WiFiProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36785908:3(1-23)Online publication date: 9-Sep-2024
  • (2024)Pushing the Limits of Acoustic Spatial Perception via Incident Angle EncodingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36595838:2(1-28)Online publication date: 15-May-2024
  • (2024)Adaptive Metasurface-Based Acoustic Imaging using Joint OptimizationProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661863(492-504)Online publication date: 3-Jun-2024

Index Terms

  1. Multi-Subject 3D Human Mesh Construction Using Commodity WiFi

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 8, Issue 1
    March 2024
    1182 pages
    EISSN:2474-9567
    DOI:10.1145/3651875
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 March 2024
    Published in IMWUT Volume 8, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D Human Mesh
    2. Channel State Information (CSI)
    3. Deep Learning
    4. Multi-subject Scenarios
    5. WiFi Sensing

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)267
    • Downloads (Last 6 weeks)33
    Reflects downloads up to 30 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SpaceBeat: Identity-aware Multi-person Vital Signs Monitoring Using Commodity WiFiProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36785908:3(1-23)Online publication date: 9-Sep-2024
    • (2024)Pushing the Limits of Acoustic Spatial Perception via Incident Angle EncodingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36595838:2(1-28)Online publication date: 15-May-2024
    • (2024)Adaptive Metasurface-Based Acoustic Imaging using Joint OptimizationProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661863(492-504)Online publication date: 3-Jun-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media