Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3560905.3568537acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article
Public Access

AiFi: AI-Enabled WiFi Interference Cancellation with Commodity PHY-Layer Information

Published: 24 January 2023 Publication History

Abstract

Interference could result in significant performance degradation in WiFi networks. Most existing solutions to interference cancellation require extra RF hardware, which is usually infeasible in many low-power wireless scenarios. In this paper, we present AiFi, a new interference cancellation technique that can be applied to commodity WiFi devices without using any extra RF hardware. The key idea of AiFi is to retrieve knowledge about interference from the locally available physical-layer (PHY) information at the WiFi receiver, including the pilot information (PI) and the channel state information (CSI). AiFi leverages the power of AI to address the possible ambiguity when estimating interference from these PHY information, and incorporates the domain knowledge about WiFi PHY to minimize the neural network complexity. Experiment results show that AiFi can correct 80% of bit errors due to interference and improves the MAC frame reception rate by 18x, with <1ms latency for interference cancellation in each frame.

References

[1]
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard 802.11-2012, March 2012.
[2]
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pages 265--283, 2016.
[3]
S. Aheleroff, X. Xu, Y. Lu, M. Aristizabal, J. P. Velásquez, B. Joa, and Y. Valencia. Iotenabled smart appliances under industry 4.0: A case study. Advanced engineering informatics, 43:101043, 2020.
[4]
M. S. Akram. Pilot-based channel estimation in OFDM systems. Master of Science Thesis, 2007.
[5]
M. Anagnostou and E. Protonotarios. Performance analysis of the selective repeat arq protocol. IEEE Transactions on Communications, 34(2):127--135, 1986.
[6]
E. Aryafar and A. Keshavarz-Haddad. Fd 2: A directional full duplex communication system for indoor wireless networks. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages 1993--2001. IEEE, 2015.
[7]
A. Astrin. Ieee standard for local and metropolitan area networks part 15.6: Wireless body area networks. IE EE Std 802.15. 6, 2012.
[8]
S. Barber. How fast does a website need to be?, 2015.
[9]
B. Bellalta. Ieee 802.11 ax: High-efficiency wlans. IEEE Wireless Communications, 23(1):38--46, 2016.
[10]
D. Bharadia, E. McMilin, and S. Katti. Full duplex radios. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 375--386, 2013.
[11]
G. Bianchi, L. Fratta, and M. Oliveri. Performance evaluation and enhancement of the csma/ca mac protocol for 802.11 wireless lans. In Proceedings of the 7th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 392--396. IEEE, 1996.
[12]
BlueCorona. How fast should a website load? https://www.bluecorona.com/blog/how-fast-should-website-be/.
[13]
M. Bredel and M. Fidler. A measurement study regarding quality of service and its impact on multiplayer online games. In 2010 9th Annual Workshop on Network and Systems Support for Games, pages 1--6. IEEE, 2010.
[14]
E. Chai, J. Lee, S.-J. Lee, R. Etkin, and K. G. Shin. Building efficient spectrum-agile devices for dummies. In Proceedings of the 18th annual international conference on Mobile computing and networking, pages 149--160, 2012.
[15]
Y.-C. Chang, K.-T. Chen, C.-C. Wu, C.-J. Ho, and C.-L. Lei. Online game qoe evaluation using paired comparisons. In 2010 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2010), pages 1--6. IEEE, 2010.
[16]
K.-T. Chen, P. Huang, and C.-L. Lei. Effect of network quality on player departure behavior in online games. IEEE Transactions on Parallel and Distributed Systems, 20(5):593--606, 2008.
[17]
L. Chen, F. Wu, J. Xu, K. Srinivasan, and N. Shroff. Bipass: Enabling end-to-end full duplex. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pages 114--126, 2017.
[18]
T. Chen, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman. Wideband full-duplex wireless via frequency-domain equalization: Design and experimentation. In The 25th Annual International Conference on Mobile Computing and Networking, pages 1--16, 2019.
[19]
J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving single channel, full duplex wireless communication. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, pages 1--12, 2010.
[20]
M. Communications. 802.11 reference design for warp v3. In warpproject.org/trac/wiki/802.11, 2013.
[21]
K. Davaslioglu, S. Soltani, T. Erpek, and Y. E. Sagduyu. Deepwifi: Cognitive wifi with deep learning. IEEE Transactions on Mobile Computing, 20(2):429--444, 2019.
[22]
Y. Ding, T. N. Davidson, Z.-Q. Luo, and K. M. Wong. Minimum ber block precoders for zero-forcing equalization. IEEE Transactions on Signal Processing, 51(9):2410--2423, 2003.
[23]
E. Felemban and E. Ekici. Single hop ieee 802.11 dcf analysis revisited: Accurate modeling of channel access delay and throughput for saturated and unsaturated traffic cases. IEEE Transactions on Wireless Communications, 10(10):3256--3266, 2011.
[24]
R. K. Ganti, P. Jayachandran, H. Luo, and T. F. Abdelzaher. Datalink streaming in wireless sensor networks. In Proceedings of the 4th international conference on Embedded networked sensor systems, pages 209--222, 2006.
[25]
J. Gao, M. Hu, C. Zhong, G. Y. Li, and Z. Zhang. An attention-aided deep learning framework for massive mimo channel estimation. IEEE Transactions on Wireless Communications, 21(3):1823--1835, 2021.
[26]
J. Ghaderi and R. Srikant. Effect of access probabilities on the delay performance of q-csma algorithms. In 2012 Proceedings IEEE INFOCOM, pages 2068--2076. IEEE, 2012.
[27]
J. Gold. 2.4ghz is a headache for wi-fi users, and it's here to stay. Network World. https://www.networkworld.com/article/3192984/2-4ghz-is-a-headache-for-wi-fi-users-and-it-s-here-to-stay.html.
[28]
S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the rf smog: making 802.11 n robust to cross-technology interference. In Proceedings of the ACM SIGCOMM 2011 Conference, pages 170--181, 2011.
[29]
S. Gollakota and D. Katabi. Zigzag decoding: Combating hidden terminals in wireless networks. In Proceedings of the ACM SIGCOMM 2008 conference on Data communication, pages 159--170, 2008.
[30]
S. Gollakota, S. D. Perli, and D. Katabi. Interference alignment and cancellation. In Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pages 159--170, 2009.
[31]
Google. Find out how you stack up to new industry benchmarks for mobile page speed. https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/.
[32]
K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):2222--2232, 2016.
[33]
X. Guo, Y. He, J. Zhang, and H. Jiang. Wide: physical-level ctc via digital emulation. In 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 49--60. IEEE, 2019.
[34]
D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM computer communication review, 41(1):53--53, 2011.
[35]
M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha. Practical, real-time, full duplex wireless. In Proceedings of the 17th annual international conference on Mobile computing and networking, pages 301--312, 2011.
[36]
M. V. Jamali, X. Liu, A. V. Makkuva, H. Mahdavifar, S. Oh, and P. Viswanath. Reed-muller subcodes: Machine learning-aided design of efficient soft recursive decoding. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 1088--1093. IEEE, 2021.
[37]
M. V. Jamali, H. Saber, H. Hatami, and J. H. Bae. Productae: Toward training larger channel codes based on neural product codes. In ICC 2022-IEEE International Conference on Communications, pages 3898--3903. IEEE, 2022.
[38]
K. Jamieson and H. Balakrishnan. PPR: Partial packet recovery for wireless networks. ACM SIGCOMM Computer Communication Review, 37(4):409--420, 2007.
[39]
L. Jiang and J. Walrand. A distributed csma algorithm for throughput and utility maximization in wireless networks. IEEE/ACM Transactions on Networking, 18(3):960--972, 2009.
[40]
W. Jiang, Z. Yin, R. Liu, Z. Li, S. M. Kim, and T. He. Bluebee: a 10,000x faster cross-technology communication via phy emulation. In Proceedings of ACM SenSys. ACM, 2017.
[41]
Y. Jiang, M. K. Varanasi, and J. Li. Performance analysis of zf and mmse equalizers for mimo systems: An in-depth study of the high snr regime. IEEE Transactions on Information Theory, 57(4):2008--2026, 2011.
[42]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. Wi-fi backscatter: Internet connectivity for rf-powered devices. In Proceedings of ACM Conference on SIGCOMM, pages 607--618. ACM, 2014.
[43]
M. Kim, W. Lee, J. Yoon, and O. Jo. Building encoder and decoder with deep neural networks: On the way to reality. arXiv preprint arXiv:1808.02401, 2018.
[44]
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[45]
A. Klein, G. K. Kaleh, and P. W. Baier. Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels. IEEE transactions on Vehicular Technology, 45(2):276--287, 1996.
[46]
T. Kliestik, E. Nica, H. Musa, M. Poliak, and E.-A. Mihai. Networked, smart, and responsive devices in industry 4.0 manufacturing systems. Economics, Management and Financial Markets, 15(3):23--29, 2020.
[47]
A. Koubaa, M. Alves, and E. Tovar. A comprehensive simulation study of slotted csma/ca for ieee 802.15. 4 wireless sensor networks. In 2006 IEEE international workshop on factory communication systems, pages 183--192. IEEE, 2006.
[48]
R. Kudo, S. M. Armour, J. P. McGeehan, and M. Mizoguchi. A channel state information feedback method for massive mimo-ofdm. Journal of Communications and Networks, 15(4):352--361, 2013.
[49]
S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi. Bringing cross-layer mimo to today's wireless lans. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 387--398, 2013.
[50]
B.-J. Kwak, N.-O. Song, and L. E. Miller. Performance analysis of exponential backoff. IEEE/ACM transactions on networking, 13(2):343--355, 2005.
[51]
L. Li, H. Chen, H.-H. Chang, and L. Liu. Deep residual learning meets ofdm channel estimation. IEEE Wireless Communications Letters, 9(5):615--618, 2019.
[52]
Z. Li and T. He. Webee: Physical-layer cross-technology communication via emulation. In Proceedings of ACM MobiCom. ACM, 2017.
[53]
K. C.-J. Lin, S. Gollakota, and D. Katabi. Random access heterogeneous mimo networks. ACM SIGCOMM Computer Communication Review, 41(4):146--157, 2011.
[54]
R. Liu, Z. Yin, W. Jiang, and T. He. Lte2b: Time-domain cross-technology emulation under lte constraints. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, pages 179--191, 2019.
[55]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: wireless communication out of thin air. In ACM SIGCOMM Computer Communication Review, volume 43, pages 39--50, 2013.
[56]
V. Liu, V. Talla, and S. Gollakota. Enabling instantaneous feedback with full-duplex backscatter. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MobiCom), pages 67--78. ACM, 2014.
[57]
N. I. Miridakis and D. D. Vergados. A survey on the successive interference cancellation performance for single-antenna and multiple-antenna ofdm systems. IEEE Communications Surveys & Tutorials, 15(1):312--335, 2012.
[58]
S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour. Wireless body area networks: A survey. IEEE Communications surveys & tutorials, 16(3):1658--1686, 2014.
[59]
D. Neumann, T. Wiese, and W. Utschick. Learning the mmse channel estimator. IEEE Transactions on Signal Processing, 66(11):2905--2917, 2018.
[60]
J. Ni, B. Tan, and R. Srikant. Q-csma: Queue-length-based csma/ca algorithms for achieving maximum throughput and low delay in wireless networks. IEEE/ACM Transactions on Networking, 20(3):825--836, 2011.
[61]
H. Rahul, H. Hassanieh, and D. Katabi. Sourcesync: a distributed wireless architecture for exploiting sender diversity. ACM SIGCOMM Computer Communication Review, 41(4):171--182, 2011.
[62]
S. Rathinakumar, B. Radunovic, and M. K. Marina. Cprecycle: Recycling cyclic prefix for versatile interference mitigation in ofdm based wireless systems. In Proceedings of the 12th International on Conference on emerging Networking EX-periments and Technologies, pages 67--81, 2016.
[63]
L. Ruan and V. K. Lau. Dynamic interference mitigation for generalized partially connected quasi-static mimo interference channel. IEEE Transactions on Signal Processing, 59(8):3788--3798, 2011.
[64]
N. Rubens, M. Elahi, M. Sugiyama, and D. Kaplan. Active learning in recommender systems. In Recommender systems handbook, pages 809--846. Springer, 2015.
[65]
J. Schmitz, C. von Lengerke, N. Airee, A. Behboodi, and R. Mathar. A deep learning wireless transceiver with fully learned modulation and synchronization. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pages 1--6. IEEE, 2019.
[66]
P. Schniter. Low-complexity equalization of ofdm in doubly selective channels. IEEE Transactions on Signal processing, 52(4):1002--1011, 2004.
[67]
D. Shah and J. Shin. Delay optimal queue-based csma. ACM SIGMETRICS Performance Evaluation Review, 38(1):373--374, 2010.
[68]
N. Shahin, R. Ali, and Y.-T. Kim. Hybrid slotted-csma/ca-tdma for efficient massive registration of iot devices. IEEE Access, 6:18366--18382, 2018.
[69]
G. Shishir, R. Sonigra, N. Seshadri, and R. D. Koilpillai. Hybrid-arq protocol for next generation wi-fi systems. In 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS), pages 342--350. IEEE, 2021.
[70]
S. Sibecas, C. A. Corral, S. Emami, G. Stratis, and G. Rasor. Pseudo-pilot ofdm scheme for 802.11 a and r/a in dsrc applications. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), volume 2, pages 1234--1237. IEEE, 2003.
[71]
M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh. Deep learning-based channel estimation. IEEE Communications Letters, 23(4):652--655, 2019.
[72]
J. Thomson, B. Baas, E. M. Cooper, J. M. Gilbert, G. Hsieh, P. Husted, A. Lokanathan, J. S. Kuskin, D. McCracken, B. McFarland, et al. An integrated 802.11a baseband and MAC processor. In IEEE International Solid-State Circuits Conference, pages 126--451, 2002.
[73]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
[74]
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks. stat, 1050:20, 2017.
[75]
X. Wang and K. Kar. Throughput modelling and fairness issues in csma/ca based ad-hoc networks. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., volume 1, pages 23--34. Ieee, 2005.
[76]
M. Wildemeersch, T. Q. Quek, M. Kountouris, A. Rabbachin, and C. H. Slump. Successive interference cancellation in heterogeneous networks. IEEE transactions on communications, 62(12):4440--4453, 2014.
[77]
P. K. Wong, D. Yin, and T. T. Lee. Analysis of non-persistent csma protocols with exponential backoff scheduling. IEEE Transactions on Communications, 59(8):2206--2214, 2011.
[78]
D. Wu, M. Nekovee, and Y. Wang. Deep learning-based autoencoder for m-user wireless interference channel physical layer design. IEEE Access, 8:174679--174691, 2020.
[79]
J. Xie, W. Hu, and Z. Zhang. Revisiting partial packet recovery in 802.11 wireless lans. In Proceedings of the 9th international conference on Mobile systems, applications, and services, pages 281--292, 2011.
[80]
Y. Xie, Z. Li, and M. Li. Precise power delay profiling with commodity wi-fi. IEEE Transactions on Mobile Computing, 18(6):1342--1355, 2018.
[81]
Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: Lstm cells and network architectures. Neural computation, 31(7):1235--1270, 2019.
[82]
K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang. Mobile edge computing and networking for green and low-latency internet of things. IEEE Communications Magazine, 56(5):39--45, 2018.
[83]
P. Zhang, J. Gummeson, and D. Ganesan. Blink: A high throughput link layer for backscatter communication. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys), pages 99--112. ACM, 2012.
[84]
X. Zhang and K. G. Shin. Gap sense: Lightweight coordination of heterogeneous wireless devices. In IEEE INFOCOM, 2013.
[85]
T. Zheng, Z. Chen, S. Zhang, C. Cai, and J. Luo. More-fi: Motion-robust and finegrained respiration monitoring via deep-learning uwb radar. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pages 111--124, 2021.
[86]
W. Zhou, T. Das, L. Chen, K. Srinivasan, and P. Sinha. Basic: Backbone-assisted successive interference cancellation. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pages 149--161, 2016.

Index Terms

  1. AiFi: AI-Enabled WiFi Interference Cancellation with Commodity PHY-Layer Information

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SenSys '22: Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems
    November 2022
    1280 pages
    ISBN:9781450398862
    DOI:10.1145/3560905
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 January 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. artificial intelligence
    2. channel state information
    3. interference cancellation
    4. pilot information
    5. wifi

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    Acceptance Rates

    SenSys '22 Paper Acceptance Rate 52 of 187 submissions, 28%;
    Overall Acceptance Rate 174 of 867 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 376
      Total Downloads
    • Downloads (Last 12 months)253
    • Downloads (Last 6 weeks)40
    Reflects downloads up to 25 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media