Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Burst photography for high dynamic range and low-light imaging on mobile cameras

Published: 05 December 2016 Publication History

Abstract

Cell phone cameras have small apertures, which limits the number of photons they can gather, leading to noisy images in low light. They also have small sensor pixels, which limits the number of electrons each pixel can store, leading to limited dynamic range. We describe a computational photography pipeline that captures, aligns, and merges a burst of frames to reduce noise and increase dynamic range. Our system has several key features that help make it robust and efficient. First, we do not use bracketed exposures. Instead, we capture frames of constant exposure, which makes alignment more robust, and we set this exposure low enough to avoid blowing out highlights. The resulting merged image has clean shadows and high bit depth, allowing us to apply standard HDR tone mapping methods. Second, we begin from Bayer raw frames rather than the demosaicked RGB (or YUV) frames produced by hardware Image Signal Processors (ISPs) common on mobile platforms. This gives us more bits per pixel and allows us to circumvent the ISP's unwanted tone mapping and spatial denoising. Third, we use a novel FFT-based alignment algorithm and a hybrid 2D/3D Wiener filter to denoise and merge the frames in a burst. Our implementation is built atop Android's Camera2 API, which provides per-frame camera control and access to raw imagery, and is written in the Halide domain-specific language (DSL). It runs in 4 seconds on device (for a 12 Mpix image), requires no user intervention, and ships on several mass-produced cell phones.

Supplementary Material

ZIP File (a192-hasinoff.zip)
Supplemental file.

References

[1]
Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D. E., Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek, J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K., Horowitz, M., and Levoy, M. 2010. The Frankencamera: an experimental platform for computational photography. SIGGRAPH.
[2]
Adams, A. 1981. The Print, The Ansel Adams Photography Series 3. New York Graphic Society.
[3]
Adobe Inc., 2016. Photoshop CC 2015.1.2, http://www.adobe.com/creativecloud.html.
[4]
Aubry, M., Paris, S., Hasinoff, S. W., Kautz, J., and Du-rand, F. 2014. Fast local laplacian filters: Theory and applications. TOG.
[5]
Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. IJCV.
[6]
Bennett, E. P., and McMillan, L. 2005. Video enhancement using per-pixel virtual exposures. SIGGRAPH.
[7]
Brox, T., and Malik, J. 2011. Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI.
[8]
Dabov, K., Foi, A., and Egiazarian, K. 2007. Video denoising by sparse 3D transform-domain collaborative filtering. EUSIPCO.
[9]
Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. TIP.
[10]
Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. SIGGRAPH.
[11]
Delbracio, M., and Sapiro, G. 2015. Hand-held video deblur-ring via efficient fourier aggregation. TCI.
[12]
Donoho, D. L. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41, 3, 613--627.
[13]
DxO Inc., 2015. Google Nexus 6P review, http://www.dxomark.com/Mobiles.
[14]
Farbman, Z., Fattal, R., and Lischinski, D. 2011. Convolution pyramids. SIGGRAPH.
[15]
Farnebäck, G. 2002. Polynomial Expansion for Orientation and Motion Estimation. PhD thesis, Linköping University, Sweden.
[16]
Farsiu, S., Elad, M., and Milanfar, P. 2006. Multi-frame demosaicing and super-resolution of color images. TIP.
[17]
Frigo, M., and Johnson, S. G. 2005. The design and implementation of FFTW3. Proc. IEEE.
[18]
Gallo, O., and Sen, P. 2016. Stack-based algorithms for HDR capture and reconstruction. In High Dynamic Range Video: From Acquisition, to Display and Applications, F. Dufaux, P. L. Callet, R. K. Mantiuk, and M. Mrak, Eds. Academic Press, ch. 3, 85--119.
[19]
Google Inc., 2016. Android Camera2 API, http://developer.android.com/reference/android/hardware/camera2/package-summary.html.
[20]
Google Inc., 2016. HDR+ burst photography dataset, http://www.hdrplusdata.org.
[21]
Gunturk, B., Glotzbach, J., Altunbasak, Y., Schafer, R., and Mersereau, R. 2005. Demosaicking: color filter array interpolation. IEEE Signal Processing Magazine.
[22]
Hasinoff, S. W., Durand, F., and Freeman, W. T. 2010. Noise-optimal capture for high dynamic range photography. CVPR.
[23]
Healey, G., and Kondepudy, R. 1994. Radiometric CCD camera calibration and noise estimation. TPAMI 16, 3, 267--276.
[24]
Heide, F., Steinberger, M., Tsai, Y.-T., Rouf, M., Pajk, D., Reddy, D., Gallo, O., Liu, J., Heidrich, W., Egiazarian, K., Kautz, J., and Pulli, K. 2014. FlexISP: A flexible camera image processing framework. SIGGRAPH Asia.
[25]
Horn, B. K. P., and Schunk, B. G. 1981. Determining optical flow. Artificial Intelligence.
[26]
Joshi, N., and Cohen, M. F. 2010. Seeing Mt. Rainier: Lucky imaging for multi-image denoising, sharpening, and haze removal. ICCP.
[27]
Kim, S. J., Lin, H. T., Lu, Z., Süsstrunk, S., Lin, S., and Brown, M. S. 2012. A new in-camera imaging model for color computer vision and its application. TPAMI.
[28]
Kokaram, A. C. 1993. Motion picture restoration. PhD thesis, Churchill College, University of Cambridge. Section 8.1.
[29]
Levoy, M. 2010. Experimental platforms for computational photography. IEEE CG&A 30.
[30]
Lewis, J. 1995. Fast normalized cross-correlation. Vision interface.
[31]
Light, 2016. Light L16 camera, https://light.co/camera.
[32]
Liu, C., Yuen, J., and Torralba, A. 2011. Sift flow: Dense correspondence across scenes and its applications. TPAMI.
[33]
Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., and Sun, J. 2014. Fast burst images denoising. SIGGRAPH Asia.
[34]
Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. IJCAI.
[35]
Mäkitalo, M., and Foi, A. 2013. Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. TIP.
[36]
Martinec, E., 2008. Noise, dynamic range and bit depth in digital SLRs, http://theory.uchicago.edu/~ejm/pix/20d/tests/noise.
[37]
Menze, M., and Geiger, A. 2015. Object scene flow for autonomous vehicles. CVPR.
[38]
Mertens, T., Kautz, J., and Reeth, F. V. 2007. Exposure fusion. Pacific Graphics.
[39]
Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. SIGGRAPH.
[40]
Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F. 2012. Decoupling algorithms from schedules for easy optimization of image processing pipelines. SIGGRAPH.
[41]
Reinhard, E., Ward, G., Pattanaik, S. N., Debevec, P. E., and Heidrich, W. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Academic Press.
[42]
Stone, H. S., Orchard, M. T., Chang, E.-C., and Martucci, S. 2001. A fast direct Fourier-based algorithm for subpixel registration of images. TGRS.
[43]
Tao, M. W., Bai, J., Kohli, P., and Paris, S. 2012. Simple-flow: A non-iterative, sublinear optical flow algorithm. Computer Graphics Forum (Eurographics 2012).
[44]
Telleen, J., Sullivan, A., Yee, J., Wang, O., Gunawardane, P., Collins, I., and Davis, J. 2007. Synthetic shutter speed imaging. Computer Graphics Forum.
[45]
Wiegand, T., Sullivan, G. J., Bjøntegaard, G., and Luthra, A. 2003. Overview of the H.264/AVC video coding standard. TCSVT.
[46]
Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. SIGGRAPH.
[47]
Yamaguchi, K., McAllester, D., and Urtasun, R. 2014. Efficient joint segmentation, occlusion labeling, stereo and flow estimation. ECCV.
[48]
Zhang, L., Deshpande, A., and Chen, X. 2010. Denoising vs. deblurring: HDR imaging techniques using moving cameras. CVPR.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 6
November 2016
1045 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2980179
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 December 2016
Published in TOG Volume 35, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational photography
  2. high dynamic range

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,679
  • Downloads (Last 6 weeks)235
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)SeBIR: Semantic-guided burst image restorationNeural Networks10.1016/j.neunet.2024.106834181(106834)Online publication date: Jan-2025
  • (2025)Efficient recurrent real video restorationDigital Signal Processing10.1016/j.dsp.2024.104851156(104851)Online publication date: Jan-2025
  • (2024)High Dynamic Range Image Processing for Retinal Color Fundus PhotographyOphthalmic Surgery, Lasers and Imaging Retina10.3928/23258160-20240131-0155:5(263-269)Online publication date: May-2024
  • (2024)A Novel Self-Adaptive Deformable Convolution-Based U-Net for Low-Light Image DenoisingSymmetry10.3390/sym1606064616:6(646)Online publication date: 23-May-2024
  • (2024)Event-based Asynchronous HDR Imaging by Temporal Incident Light ModulationOptics Express10.1364/OE.520808Online publication date: 25-Apr-2024
  • (2024)The choices hidden in photographyJournal of Vision10.1167/jov.22.11.1022:11(10)Online publication date: 27-Nov-2024
  • (2024)Split-Aperture 2-in-1 Computational CamerasACM Transactions on Graphics10.1145/365822543:4(1-19)Online publication date: 19-Jul-2024
  • (2024)Bilateral Guided Radiance Field ProcessingACM Transactions on Graphics10.1145/365814843:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Self-supervised High Dynamic Range Imaging: What Can Be Learned from a Single 8-bit Video?ACM Transactions on Graphics10.1145/364857043:2(1-16)Online publication date: 20-Feb-2024
  • (2024)Supporting Safety Analysis of Image-processing DNNs through Clustering-based ApproachesACM Transactions on Software Engineering and Methodology10.1145/364367133:5(1-48)Online publication date: 3-Jun-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media