Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Symbolic Trajectories

Published: 27 July 2015 Publication History

Abstract

Due to the proliferation of GPS-enabled devices in vehicles or with people, large amounts of position data are recorded every day and the management of such mobility data, also called trajectories, is a very active research field. A lot of effort has gone into discovering “semantics” from the raw geometric trajectories by relating them to the spatial environment or finding patterns, for example, by data mining techniques. A question is how the resulting “meaningful” trajectories can be represented or further queried.
In this article, we propose a systematic study of annotated trajectory databases. We define a very simple generic model called symbolic trajectory to capture a wide range of meanings derived from a geometric trajectory. Essentially, a symbolic trajectory is just a time-dependent label; variants have sets of labels, places, or sets of places. They are modeled as abstract data types and integrated into a well-established framework of data types and operations for moving objects. Symbolic trajectories can represent, for example, the names of roads traversed obtained by map matching, transportation modes, speed profile, cells of a cellular network, behaviors of animals, cinemas within 2km distance, and so forth. Symbolic trajectories can be combined with geometric trajectories to obtain annotated trajectories.
Besides the model, the main technical contribution of the article is a language for pattern matching and rewriting of symbolic trajectories. A symbolic trajectory can be represented as a sequence of pairs (called units) consisting of a time interval and a label. A pattern consists of unit patterns (specifications for time interval and/or label) and wildcards, matching units and sequences of units, respectively, and regular expressions over such elements. It may further contain variables that can be used in conditions and in rewriting. Conditions and expressions in rewriting may use arbitrary operations available for querying in the host DBMS environment, which makes the language extensible and quite powerful.
We formally define the data model and syntax and semantics of the pattern language. Query operations are offered to integrate pattern matching, rewriting, and classification of symbolic trajectories into a DBMS querying environment. Implementation of the model using finite state machines is described in detail. An experimental evaluation demonstrates the efficiency of the implementation. In particular, it shows dramatic improvements in storage space and response time in a comparison of symbolic and geometric trajectories for some simple queries that can be executed on both symbolic and raw trajectories.

Supplementary Material

a7-guting-apndx.pdf (guting.zip)
Supplemental movie, appendix, image and software files for, Symbolic Trajectories

References

[1]
J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. 2008. Efficient pattern matching over event streams. In ACM SIGMOD. 147--160.
[2]
R. Ahas, E. Saluveer, M. Tiru, and S. Silm. 2008. Mobile positioning based tourism monitoring system: positium barometer. In ENTER, P. O’Connor, W. Höpken, and U. Gretzel (Eds.). Springer, 475--485.
[3]
A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd ed.). Addison-Wesley Longman Publishing Co., Boston, MA.
[4]
N. Andrienko and G. Andrienko. 2013. Visual analytics of movement: An overview of methods, tools and procedures. Inf. Visualization 12, 1 (2013), 3--24.
[5]
L. Chen, M. T. Özsu, and V. Oria. 2005. Robust and fast similarity search for moving object trajectories. In SIGMOD Conference. 491--502.
[6]
G. Cong, H. Lu, B. Chin Ooi, D. Zhang, and M. Zhang. 2012. Efficient spatial keyword search in trajectory databases. CoRR abs/1205.2880 (2012). http://arxiv.org/abs/1205.2880.
[7]
M. L. Damiani, H. Issa, and F. Cagnacci. 2014a. Extracting stay regions with uncertain boundaries from GPS trajectories: A case study in animal ecology. In ACM SIGSPATIAL 2014, Vol. 22. 253--262.
[8]
M. L. Damiani, H. Issa, R. H. Güting, and F. Valdés. 2014b. Hybrid queries over symbolic trajectories: A usage scenario. In MDM. 341--344.
[9]
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (2008), 1542--1552.
[10]
C. du Mouza and P. Rigaux. 2005. Mobility patterns. Geoinformatica 9, 4 (2005), 297--319.
[11]
C. Düntgen, T. Behr, and R. H. Güting. 2009. BerlinMOD: A benchmark for moving object databases. VLDB J. 18, 6 (2009), 1335--1368.
[12]
N. Eagle and A. Pentland. 2006. Reality mining: Sensing complex social systems. Pers. Ubiquitous Comput. 10, 4 (2006), 255--268.
[13]
M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis. 1999. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica 3, 3 (1999), 269--296.
[14]
C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. 1994. Fast subsequence matching in time-series databases. In Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD’94).
[15]
L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. 2000. A data model and data structures for moving objects databases. In SIGMOD Conference. 319--330.
[16]
A. U. Frank. 1996. Qualitative spatial reasoning: Cardinal directions as an example. Int. J. Geog. Inf. Syst. 10, 3 (1996), 269--290.
[17]
L. Gao and X. S. Wang. 2009. Time series query. In Encyclopedia of Database Systems. 3114--3119.
[18]
F. Giannotti and D. Pedreschi. 2008. Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer.
[19]
R. H. Güting. 2009. Moving objects databases and tracking. In Encyclopedia of Database Systems. 1770--1776.
[20]
R. H. Güting, F. Valdés, and M. L. Damiani. 2013. Symbolic Trajectories. Technical Report. FernUniversität Hagen, Informatik-Report 369.
[21]
R. H. Güting, T. Behr, and C. Düntgen. 2010. SECONDO: A platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33, 2 (2010), 56--63.
[22]
R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. 2000. A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25, 1 (2000), 1--42.
[23]
R. H. Güting, V. T. de Almeida, and Z. Ding. 2006. Modeling and querying moving objects in networks. VLDB J. 15, 2 (2006), 165--190.
[24]
R. H. Güting and M. Schneider. 2005. Moving Objects Databases. Morgan Kaufmann.
[25]
M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. 2005. Complex spatio-temporal pattern queries. In Proc. of the 31st International Conference on VLDB. Trondheim, Norway, 877--888.
[26]
J. G. Kie, J. Matthiopoulos, J. Fieberg, R. A. Powell, F. Cagnacci, M. S. Mitchell, J.-M. Gaillard, and P. R. Moorcroft. 2010. The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philos. Trans. R. Soc. B 365, 1550 (2010), 2221--2231.
[27]
F. Korn, H. V. Jagadish, and C. Faloutsos. 1997. Efficiently supporting ad hoc queries in large datasets of time sequences. In Proc. of the ACM SIGMOD International Conference on Management of Data (SIGMOD’97).
[28]
Z. Li, J. Han, M. Ji, L.-A. Tang, Y. Yu, B. Ding, J.-G. Lee, and R. Kays. 2011. MoveMine: Mining moving object data for discovery of animal movement patterns. ACM Trans. Intell. Syst. Technol. 2, 4 (July 2011), 37:1--37:32.
[29]
L. Liao, D. Fox, and H. Kautz. 2005. Location-based activity recognition using relational Markov networks. In Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). 773--778.
[30]
J. Liu, O. Wolfson, and H. Yin. 2006. Extracting semantic location from outdoor positioning systems. In Proc. of the 7th International Conference on Mobile Data Management. 73.
[31]
Microsoft Geolife. 2015. http://research.microsoft.com/en-us/projects/geolife. (2015).
[32]
P. Newson and J. Krumm. 2009. Hidden Markov map matching through noise and sparseness. In ACM SIGSPATIAL GIS. 336--343.
[33]
L.-V. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel. 2010. Spatio-temporal access methods: Part 2 (2003-2010). IEEE Data Eng. Bull. 33, 2 (2010), 46--55.
[34]
A. T. Palma, V. Bogorny, B. Kuijpers, and L. Otávio Alvares. 2008. A clustering-based approach for discovering interesting places in trajectories. In SAC. 863--868.
[35]
N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. 2008. HERMES: Aggregative LBS via a trajectory DB engine. In SIGMOD Conference. 1255--1258.
[36]
N. Pelekis and Y. Theodoridis. 2014. Mobility Data Management and Exploration. Springer.
[37]
D. Pfoser, C. S. Jensen, and Y. Theodoridis. 2000. Novel approaches in query processing for moving object trajectories. In VLDB. 395--406.
[38]
M. A. Quddus, W. Y. Ochieng, and R. B. Noland. 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transp. Res. Part C: Emerging Technol. 15, 5 (2007), 312--328.
[39]
S. Reddy, M. Y. Mun, J. Burke, D. Estrin, M. H. Hansen, and M. B. Srivastava. 2010. Using mobile phones to determine transportation modes. TOSN 6, 2 (2010), 1--27.
[40]
C. Renso, S. Spaccapietra, and E. Zimányi. 2013. Mobility Data -- Modeling, Management, and Understanding. Cambridge Press.
[41]
J. A. M. R. Rocha, V. C. Times, G. Oliveira, L. O. Alvares, and V. Bogorny. 2010. DB-SMoT: A direction-based spatio-temporal clustering method. In IEEE Conf. of Intelligent Systems. 114--119.
[42]
R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. 2004. Expressing and optimizing sequence queries in database systems. ACM Trans. Database Syst. 29, 2 (2004), 282--318.
[43]
M. A. Sakr and R. H. Güting. 2011. Spatiotemporal pattern queries. GeoInformatica 15, 3 (2011), 497--540.
[44]
S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. 2008. A conceptual view on trajectories. Data Knowl. Eng. 65, 1 (April 2008), 126--146.
[45]
S. Spaccapietra, C. Parent, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. L. Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, and Z. Yan. 2013. Semantic trajectories modeling and analysis. Comput. Surveys 45(4) (2013), 42.
[46]
L. Speicys, C. S. Jensen, and A. Kligys. 2003. Computational data modeling for network-constrained moving objects. In ACM SIGSPATIAL GIS. 118--125.
[47]
L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. 2011. Transportation mode detection using mobile phones and GIS information. In ACM SIGSPATIAL GIS. 54--63.
[48]
G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing uncertainty in moving objects databases. ACM Trans. Database Syst. 29, 3 (2004), 463--507.
[49]
F. Urbano, F. Cagnacci, C. Calenge, H. Dettki, A. Cameron, and M. Neteler. 2010. Wildlife tracking data management: A new vision. Philos. Trans. R. Soc. B 365, 1550 (2010), 2177--2185.
[50]
F. Valdés, M. L. Damiani, and R. H. Güting. 2013. Symbolic trajectories in SECONDO: Pattern matching and rewriting. In Database Systems for Advanced Applications. 450--453.
[51]
F. Valdés and R. H. Güting. 2014. Index-supported pattern matching on symbolic trajectories. In Proc. of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas/Fort Worth, TX, November 4--7, 2014. 53--62.
[52]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. 2010. Querying trajectories using flexible patterns. In Proc. of the 13th Int. Conf. on Extending Database Technology (EDBT’10). 406--417.
[53]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. 2011. FlexTrack: A system for querying flexible patterns in trajectory databases. In 12th International Symposium, SSTD. 475--480.
[54]
W. Wu, Y. Wang, J. Bartolo Gomes, D. T. Anh, J. Decraene, S. Antonatos, M. Xue, P. Yang, G.-E. Yap, X. Li, S. Krishnaswamy, and A. Shi-Nash. 2014. Oscillation resolution for mobile phone cellular tower data to enable mobility modelling. In MDM. 321--328.
[55]
Z. Yan and D. Chakraborty. 2014. Semantics in Mobile Sensing. Morgan & Claypool.
[56]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2011. SeMiTri: A framework for semantic annotation of heterogeneous trajectories. In EDBT 2011. 259--270.
[57]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. 2013. Semantic trajectories: Mobility data computation and annotation. ACM Trans. Intell. Syst. Technol. 4, 3 (2013), 49:1--49:38.
[58]
C. Zhang, J. Han, L. Shou, J. Lu, and T. F. La Porta. 2014. Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB 7, 9 (2014), 769--780.
[59]
K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. 2013. Towards efficient search for activity trajectories. In Proc. of the 2013 IEEE International Conference on Data Engineering (ICDE’13).
[60]
Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. 2010a. Understanding transportation modes based on GPS data for web applications. ACM Trans. Web 4, 1 (January 2010), 1:1--1:36.
[61]
Y. Zheng, X. Xie, and W.-Y. Ma. 2010b. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32--39.
[62]
Y. Zheng and X. Zhou. 2011. Computing with Spatial Trajectories. Springer.

Cited By

View all
  • (2022)Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories DatabasesProceedings of the 34th International Conference on Scientific and Statistical Database Management10.1145/3538712.3538716(1-12)Online publication date: 6-Jul-2022
  • (2022)A topological model of trajectories with road network spaceTransactions in GIS10.1111/tgis.1293026:4(1847-1878)Online publication date: 22-Apr-2022
  • (2022)Reverse Nearest Neighbor Search in Semantic Trajectories for Location-Based ServicesIEEE Transactions on Services Computing10.1109/TSC.2020.296830915:2(986-999)Online publication date: 1-Mar-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Spatial Algorithms and Systems
ACM Transactions on Spatial Algorithms and Systems  Volume 1, Issue 2
November 2015
144 pages
ISSN:2374-0353
EISSN:2374-0361
DOI:10.1145/2808193
  • Editor:
  • Hanan Samet
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Accepted: 01 May 2015
Revised: 01 March 2015
Received: 01 August 2014
Published in TSAS Volume 1, Issue 2

Permissions

Request permissions for this article.

Author Tags

  1. Trajectories
  2. moving objects
  3. pattern matching
  4. rewriting
  5. semantic trajectories

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • EU COST Action IC0903 “Knowledge Discovery from Moving Objects.”

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories DatabasesProceedings of the 34th International Conference on Scientific and Statistical Database Management10.1145/3538712.3538716(1-12)Online publication date: 6-Jul-2022
  • (2022)A topological model of trajectories with road network spaceTransactions in GIS10.1111/tgis.1293026:4(1847-1878)Online publication date: 22-Apr-2022
  • (2022)Reverse Nearest Neighbor Search in Semantic Trajectories for Location-Based ServicesIEEE Transactions on Services Computing10.1109/TSC.2020.296830915:2(986-999)Online publication date: 1-Mar-2022
  • (2021)K-means for semantically enriched trajectoriesProceedings of the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility10.1145/3486637.3489495(38-47)Online publication date: 2-Nov-2021
  • (2021)A Framework to Support Continuous Range Queries over Multi-Attribute TrajectoriesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2021.3100650(1-1)Online publication date: 2021
  • (2021)Location- and keyword-based querying of geo-textual data: a surveyThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00661-w30:4(603-640)Online publication date: 30-Mar-2021
  • (2021)Maritime Data Processing in Relational DatabasesGuide to Maritime Informatics10.1007/978-3-030-61852-0_3(73-118)Online publication date: 9-Feb-2021
  • (2020)Learning Behavioral Representations of Human MobilityProceedings of the 28th International Conference on Advances in Geographic Information Systems10.1145/3397536.3422255(367-376)Online publication date: 3-Nov-2020
  • (2020)Toward Translating Raw Indoor Positioning Data into Mobility SemanticsACM/IMS Transactions on Data Science10.1145/33851901:4(1-37)Online publication date: 25-Nov-2020
  • (2020)Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks2020 IEEE 36th International Conference on Data Engineering (ICDE)10.1109/ICDE48307.2020.00128(1441-1452)Online publication date: Apr-2020
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media