Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2996913.2996972acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Efficient in-memory indexing of network-constrained trajectories

Published: 31 October 2016 Publication History

Abstract

With the decreasing cost and growing size of main memory, it is increasingly relevant to utilize main-memory indexing for efficient query processing. We propose SPNET, which we believe is the first in-memory index for network-constrained trajectory data. To exploit the main-memory setting SPNET exploits efficient shortest-path compression of trajectories to achieve a compact index structure. SPNET is capable of exploiting the parallel computing capabilities of modern machines and supports both intra- and inter-query parallelism. The former improves response time, and the latter improves throughput. By design, SPNET supports a wider range of query types than any single existing index. An experimental study in a real-world setting with 1.94 billion GPS records and nearly 4 million trajectories in a road network with 1.8 million edges indicates that SPNET typically offers performance improvements over the best existing indexes of 1.5 to 2 orders of magnitude.

References

[1]
I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A hub-based labeling algorithm for shortest paths in road networks. In SEA, pages 230--241, 2011.
[2]
T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica, 6(2):153--180, 2002.
[3]
N. Chadil, A. Russameesawang, and P. Keeratiwintakorn. Real-time tracking management system using GPS, GPRS and Google Earth. In ECTI-CON, volume 1, pages 393--396, 2008.
[4]
S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with roaring bitmaps. arXiv:1402.6407, 2014.
[5]
V. T. de Almeida and R. H. Güting. Indexing the trajectories of moving objects in networks. GeoInformatica, 9(1):33--60, 2005.
[6]
I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In SIGKDD, pages 269--274, 2001.
[7]
J. Farrell. Aided navigation: GPS with high rate sensors. 2008.
[8]
J. Firnkorn and M. Müller. What will be the environmental effects of new free-floating car-sharing systems? the case of car2go in Ulm. Ecological Economics, 70(8):1519--1528, 2011.
[9]
E. Frentzos. Indexing objects moving on fixed networks. In SSTD, pages 289--305, 2003.
[10]
R. Gotsman and Y. Kanza. Compact representation of GPS trajectories over vectorial road networks. In SSTD, pages 241--258. 2013.
[11]
F. Harary and R. Z. Norman. Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo, 9(2):161--168, 1960.
[12]
B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49(2):291--307, 1970.
[13]
B. Krogh, N. Pelekis, Y. Theodoridis, and K. Torp. Path-based queries on trajectory data. In SIGSPATIAL, pages 341--350, 2014.
[14]
D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. SPE, pages 1--29, 2013.
[15]
P. M. Lerin, D. Yamamoto, and N. Takahashi. Encoding network-constrained travel trajectories using routing algorithms. International Journal of Knowledge and Web Intelligence, 4(1):34--49, 2013.
[16]
G. Mintsis, S. Basbas, P. Papaioannou, C. Taxiltaris, and I. Tziavos. Applications of GPS technology in the land transportation system. European Journal of Operational Research, 152(2):399--409, 2004.
[17]
C. Murray, D. Abugov, N. Alexander, et al. Oracle spatial userâĂŹs guide and reference. System Documentation Release, 2(9.2), 2002.
[18]
P. Newson and J. Krumm. Hidden Markov map matching through noise and sparseness. In ACM GIS, pages 336--343, 2009.
[19]
D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In ACM GIS, pages 25--32, 2003.
[20]
I. S. Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial. Indexing in-network trajectory flows. VLDB J., 20(5):643--669, 2011.
[21]
P. Sanders and C. Schulz. High quality graph partitioning. Contemporary Mathematics, 588:1--18, 2013.
[22]
R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel framework of trajectory compression in road networks. PVLDB, 7(9):661--672, 2014.
[23]
J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Concise Caching of Driving Instructions. In SIGSPATIAL, pages 23--32, 2014.
[24]
H. Wang, K. Zheng, H. Jeung, S. Bracher, A. K. Islam, W. Sadiq, S. W. Sadiq, and X. Zhou. Storing and processing massive trajectory data on SAP HANA. In ADC, pages 66--77, 2015.
[25]
H. Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An in-memory column-oriented trajectory storage. In CIKM, pages 1409--1418, 2014.
[26]
H. Wang, K. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An in-memory storage system for massive trajectory data. In SIGMOD, pages 1099--1104, 2015.

Cited By

View all
  • (2024)TRGST: An enhanced generalized suffix tree for topological relations between pathsInformation Systems10.1016/j.is.2024.102406125(102406)Online publication date: Nov-2024
  • (2023)Efficient Mining of Volunteered Trajectory DatasetsVolunteered Geographic Information10.1007/978-3-031-35374-1_3(43-77)Online publication date: 9-Dec-2023
  • (2022)Improved structures to solve aggregated queries for trips over public transportation networksInformation Sciences: an International Journal10.1016/j.ins.2021.10.079584:C(752-783)Online publication date: 1-Jan-2022
  • Show More Cited By

Index Terms

  1. Efficient in-memory indexing of network-constrained trajectories

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SIGSPACIAL '16: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
    October 2016
    649 pages
    ISBN:9781450345897
    DOI:10.1145/2996913
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 October 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. moving-objects
    2. traffic-analysis
    3. trajectories

    Qualifiers

    • Research-article

    Conference

    SIGSPATIAL'16

    Acceptance Rates

    SIGSPACIAL '16 Paper Acceptance Rate 40 of 216 submissions, 19%;
    Overall Acceptance Rate 220 of 1,116 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)27
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)TRGST: An enhanced generalized suffix tree for topological relations between pathsInformation Systems10.1016/j.is.2024.102406125(102406)Online publication date: Nov-2024
    • (2023)Efficient Mining of Volunteered Trajectory DatasetsVolunteered Geographic Information10.1007/978-3-031-35374-1_3(43-77)Online publication date: 9-Dec-2023
    • (2022)Improved structures to solve aggregated queries for trips over public transportation networksInformation Sciences: an International Journal10.1016/j.ins.2021.10.079584:C(752-783)Online publication date: 1-Jan-2022
    • (2021)TRACEProceedings of the VLDB Endowment10.14778/3450980.345098714:7(1175-1187)Online publication date: 1-Mar-2021
    • (2020)Fast subtrajectory similarity search in road networks under weighted edit distance constraintsProceedings of the VLDB Endowment10.14778/3407790.340781813:12(2188-2201)Online publication date: 14-Sep-2020
    • (2020)Compression of uncertain trajectories in road networksProceedings of the VLDB Endowment10.14778/3384345.338435313:7(1050-1063)Online publication date: 1-Mar-2020
    • (2020)Scalable unsupervised multi-criteria trajectory segmentation and driving preference miningProceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data10.1145/3423336.3429348(1-10)Online publication date: 3-Nov-2020
    • (2020)Succinct Trit-array Trie for Scalable Trajectory Similarity SearchProceedings of the 28th International Conference on Advances in Geographic Information Systems10.1145/3397536.3422210(518-529)Online publication date: 3-Nov-2020
    • (2020)Efficient Path Query Processing Over Massive Trajectories on the CloudIEEE Transactions on Big Data10.1109/TBDATA.2018.28689366:1(66-79)Online publication date: 1-Mar-2020
    • (2020)Trajectory Similarity Assessment On Road Networks Via Embedding Learning2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM)10.1109/BigMM50055.2020.00012(1-8)Online publication date: Sep-2020
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media