Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Variance analysis for Monte Carlo integration

Published: 27 July 2015 Publication History

Abstract

We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.

Supplementary Material

ZIP File (a124-pilleboue.zip)
Supplemental files
MP4 File (a124.mp4)

References

[1]
Arvo, J. 1995. Stratified sampling of spherical triangles. In Proc. SIGGRAPH '95, ACM, 437--438.
[2]
Arvo, J. 2001. Stratified sampling of 2-manifolds. SIGGRAPH 2001 Course Notes 29, 2.
[3]
Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. on Graphics 28, 3, 86:1--8.
[4]
Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. In Proc. SIGGRAPH Asia '10, ACM, 166:1--166:10.
[5]
Brandolini, L., Colzani, L., and Torlaschi, A. 2001. Mean square decay of Fourier transforms in euclidean and non euclidean spaces. Tohoku Math. J. (2) 53, 3, 467--478.
[6]
Brauchart, J., Saff, E., Sloan, I., and Womersley, R. 2014. QMC designs: optimal order Quasi Monte Carlo integration schemes on the sphere. Mathematics of Computation.
[7]
Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In Proc. SIGGRAPH '07 Sketches, ACM, Proc. SIGGRAPH '07.
[8]
Choirat, C., and Seri, R. 2013. Computational aspects of cuifreeden statistics for equidistribution on the sphere. Mathematics of Computation 82, 284, 2137--2156.
[9]
Cline, D., Jeschke, S., White, K., Razdan, A., and Wonka, P. 2009. Dart throwing on surfaces. In Proc. EGSR '09, Eurographics Association, 1217--1226.
[10]
Cohen, M., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. on Graphics 22, 3, 287--294.
[11]
Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72.
[12]
Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799--805.
[13]
Cui, J., and Freeden, W. 1997. Equidistribution on the sphere. SIAM Scientific Computing 18, 2, 595--609.
[14]
de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. Proc. SIGGRAPH Asia '12 31, 171:1--171:10.
[15]
Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Proc. SIGGRAPH '85, ACM, 69--78.
[16]
Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In Proc. SIGGRAPH '06, ACM, 503--508.
[17]
Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. MIT CSAIL Technical report TR-2011-052.
[18]
Gabrielli, A., and Torquato, S. 2004. Voronoi and void statistics for superhomogeneous point processes. Physical Review E 70, 4, 041105.
[19]
Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. on Graphics 29, 1, 8.
[20]
Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M. 2005. Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal 622, 2, 759.
[21]
Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press. Cambridge Books Online.
[22]
Hansen, J.-P., and McDonald, I. R. 1990. Theory of simple liquids. Elsevier.
[23]
Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. on Graphics 32, 3, 25:1--25:12.
[24]
Hesse, K., Sloan, I., and Womersley, R. 2010. Numerical integration on the sphere. In Handbook of Geomathematics, W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg, 1185--1219.
[25]
Jarosz, W., Carr, N. A., and Jensen, H. W. 2009. Importance sampling spherical harmonics. Computer Graphics Forum (Proceedings of Eurographics) 28, 2 (Apr.), 577--586.
[26]
Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In Proc. of the 13th Eurographics Workshop on Rendering, Eurographics Association, 291--296.
[27]
Kazhdan, M. 2007. An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 29, 7, 1221--1229.
[28]
Keller, A., Premoze, S., and Raab, M. 2012. Advanced (quasi) Monte Carlo methods for image synthesis. In SIGGRAPH '12 Courses, ACM, New York, USA, 21:1--21:46.
[29]
Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. ACM Trans. on Graphics 25, 3, 509--518.
[30]
Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.
[31]
Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. In Proc. SIGGRAPH Asia '10, ACM, 167:1--167:12.
[32]
Marques, R., Bouville, C., Ribardire, M., Santos, L. P., and Bouatouch, K. 2013. Spherical Fibonacci point sets for illumination integrals. Computer Graphics Forum 32, 8, 134--143.
[33]
McEwen, J., and Wiaux, Y. 2011. A novel sampling theorem on the sphere. Signal Processing, IEEE Trans. on 59, 12, 5876--5887.
[34]
Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Proc. SIGGRAPH '87, 65--72.
[35]
Mitchell, D. 1991. Spectrally optimal sampling for distributed ray tracing. In Proc. SIGGRAPH '91, vol. 25, 157--164.
[36]
Mitchell, D. P. 1996. Consequences of stratified sampling in graphics. In Proc. SIGGRAPH '96, ACM, 277--280.
[37]
Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM.
[38]
Ostromoukhov, V. 2007. Sampling with polyominoes. In ACM Trans. on Graphics, vol. 26, 78.
[39]
Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 174:1--174:6.
[40]
Peyrot, J.-L., Payan, F., and Antonini, M. 2013. Feature-preserving direct blue noise sampling for surface meshes. In Eurographics 2013, 4 pages.
[41]
Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH '01, ACM, 117--128.
[42]
Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. on Graphics 31, 5, 121:1--121:16.
[43]
Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. Symp. High Performance Graphics '11, ACM, 135--142.
[44]
Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Proc. Eurographics '91, 183--194.
[45]
Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. SIGGRAPH '02, ACM, 527--536.
[46]
Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. on Graphics 32, 4, 128:1--128:12.
[47]
Subr, K., Nowrouzezahrai, D., Jarosz, W., Kautz, J., and Mitchell, K. 2014. Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination. Computer Graphics Forum (Proceedings of EGSR) 33, 4 (June), 93102.
[48]
Torquato, S., Uche, O., and Stillinger, F. 2006. Random sequential addition of hard spheres in high euclidean dimensions. Physical Review E 74, 6, 061308.
[49]
Ulichney, R. 1987. Digital Halftoning. MIT Press.
[50]
Ureña, C., Fajardo, M., and King, A. 2013. An area-preserving parametrization for spherical rectangles. Computer Graphics Forum 32, 4, 59--66.
[51]
Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. on Graphics 33, 4, 56:1--56:11.
[52]
Wieczorek, M. A., and Simons, F. J. 2005. Localized spectral analysis on the sphere. Geophysical Journal International 162, 3, 655--675.
[53]
Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Computers & Graphics 36, 4, 232--240.
[54]
Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Transactions on Graphics (TOG) 31, 4, 76.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 4
August 2015
1307 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2809654
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Published in TOG Volume 34, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Monte Carlo integration
  2. fourier analysis
  3. global illumination
  4. spherical harmonics
  5. stochastic sampling

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)6
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Differentiable Owen ScramblingACM Transactions on Graphics10.1145/368776443:6(1-12)Online publication date: 19-Dec-2024
  • (2024)Differentiating Variance for Variance-Aware Inverse RenderingSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687603(1-10)Online publication date: 3-Dec-2024
  • (2024)Quad-Optimized Low-Discrepancy SequencesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657431(1-9)Online publication date: 13-Jul-2024
  • (2024)Non‐Euclidean Sliced Optimal Transport SamplingComputer Graphics Forum10.1111/cgf.1502043:2Online publication date: 30-Apr-2024
  • (2024)Fast generation of spectrally shaped disorderPhysical Review E10.1103/PhysRevE.110.034122110:3Online publication date: 13-Sep-2024
  • (2023)Example-Based Sampling with Diffusion ModelsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618243(1-11)Online publication date: 10-Dec-2023
  • (2023)Curl Noise JitteringSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618163(1-11)Online publication date: 10-Dec-2023
  • (2023)A survey of Optimal Transport for Computer Graphics and Computer VisionComputer Graphics Forum10.1111/cgf.1477842:2(439-460)Online publication date: 23-May-2023
  • (2023)On estimating the structure factor of a point process, with applications to hyperuniformityStatistics and Computing10.1007/s11222-023-10219-133:3Online publication date: 30-Mar-2023
  • (2022)Gaussian Blue NoiseACM Transactions on Graphics10.1145/3550454.355551941:6(1-15)Online publication date: 30-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media