Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2536146.2536149acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmedesConference Proceedingsconference-collections
research-article

OptiqueVQS: towards an ontology-based visual query system for big data

Published: 28 October 2013 Publication History

Abstract

A recent EU project, named Optique, with a strong industrial perspective, strives to enable scalable end-user access to Big Data. To this end, Optique employs an ontology-based approach, along with other techniques such as query optimisation and parallelisation, for scalable query formulation and evaluation. In this paper, we specifically focus on end-user visual query formulation, demonstrate our preliminary ontology-based visual query system (i.e., interface), and discuss initial insights for alleviating the affects of Big Data.

References

[1]
G. Barzdins, E. Liepins, M. Veilande, and M. Zviedris. Ontology Enabled Graphical Database Query Tool for End-Users. In Eighth International Baltic Conference on Databases and Information Systems (DB&IS 2008), volume 187 of Frontiers in Artificial Intelligence and Applications, pages 105--116. IOS Press, 2009.
[2]
T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets. Tabulator: Exploring and Analyzing linked data on the Semantic Web. In 3rd International Semantic Web User Interaction Workshop (SWUI 2006), 2006.
[3]
C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems, 5(3): 1--22, 2009.
[4]
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors. The adaptive web: methods and strategies of web personalization. Springer-Verlag, Berlin, Heidelberg, 2007.
[5]
D. Calvanese, I. Horrocks, E. Jiménez-Ruiz, E. Kharlamov, M. Meier, M. Rodriguez-Muro, and D. Zheleznyakov. On Rewriting and Answering Queries in OBDA Systems for Big Data (Short Paper). In OWL Experiences and Directions Workshop (OWLED 2013), 2013.
[6]
L. J. Campbell, T. A. Halpin, and H. A. Proper. Conceptual schemas with abstractions making flat conceptual schemas more comprehensible. Data & Knowledge Engineering, 20(1): 39--85, 1996.
[7]
T. Catarci. What happened when database researchers met usability. Information Systems, 25(3): 177--212, 2000.
[8]
T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems for databases: A survey. Journal of Visual Languages and Computing, 8(2): 215--260, 1997.
[9]
T. Catarci, P. Dongilli, T. Di Mascio, E. Franconi, G. Santucci, and S. Tessaris. An ontology based visual tool for query formulation support. In 16th European Conference on Artificial Intelligence (ECAI 2004), volume 110 of Frontiers in Artificial Intelligence and Applications, pages 308--312. IOS Press, 2004.
[10]
J. Crompton. Keynote talk, the W3C Workshop on Semantic Web in Oil & Gas Industry: Houston, TX, USA, 9--10 December, 2008. available from http://www.w3.org/2008/12/ogwsslides/Crompton.pdf.
[11]
R. G. Epstein. The TableTalk Query Language. Journal of Visual Languages and Computing, 2(2): 115--141, 1991.
[12]
M. Giese, D. Calvanese, I. Horrocks, Y. Ioannidis, H. Klappi, M. Koubarakis, M. Lenzerini, R. Moller, O. Ozcep, M. Rodriguez Muro, R. Rosati, R. Schlatte, A. Soylu, and A. Waaler. Scalable End-user Access to Big Data. In A. Rajendra, editor, Big Data Computing. Chapman and Hall/CRC, 2013.
[13]
B. C. Grau, M. Giese, I. Horrocks, T. Hubauer, E. Jimenez-Ruiz, E. Kharlamov, M. Schmidt, A. Soylu, and D. Zheleznyakov. Towards Query Formulation and Query-Driven Ontology Extensions in OBDA Systems. In OWL Experiences and Directions Workshop (OWLED 2013), 2013.
[14]
P. Haase, I. Horrocks, D. Hovland, T. Hubauer, E. Jiménez-Ruiz, E. Kharlamov, J. Klüwer, C. Pinkel, R. Rosati, V. Santarelli, A. Soylu, and D. Zheleznyakov. Optique System: Towards Ontology and Mapping Management in OBDA Solutions. In Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM 2013), volume 999 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.
[15]
A. Harth. VisiNav: A system for visual search and navigation on web data. Journal of Web Semantics, 8(4): 348--354, 2010.
[16]
I. Horrocks, T. Hubauer, E. Jiménez-Ruiz, E. Kharlamov, M. Koubarakis, R. Möller, K. Bereta, C. Neuenstadt, O. Özçep, M. Roshchin, P. Smeros, and D. Zheleznyakov. Addressing Streaming and Historical Data in OBDA Systems: Optique's Approach (Statement of Interest). In Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD 2013), volume 992 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.
[17]
A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontology visualization methods - A survey. ACM Computing Surveys, 39(4): 10:1--10:43, 2007.
[18]
E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu, D. Zheleznyakov, T. Bagosi, M. Console, P. Haase, I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro, M. Ruzzi, V. Santarelli, D. F. Savo, K. Sengupta, M. Schmidt, E. Thorstensen, J. Trame, and A. Waaler. Optique 1.0: Semantic Access to Big Data: The Case of Norwegian Petroleum Directorate's FactPages. In International Semantic Web Conference (ISWC 2013) Posters and Demonstrations, 2013.
[19]
E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese, P. Haase, I. Horrocks, H. Kllapi, M. Koubarakis, O. Özcep, M. Rodríguez-Muro, R. Rosati, M. Schmidt, R. Schlatte, A. Soylu, and A. Waaler. Optique: Towards OBDA Systems for Industry. In The Semantic Web: ESWC 2013 Satellite Events, volume 7955 of LNCS. Springer, 2013.
[20]
N. Khoussainova, Y. Kwon, W.-T. Liao, M. Balazinska, W. Gatterbauer, and D. Suciu. Session-based browsing for more effective query reuse. In 23rd international conference on Scientific and statistical database management (SSDBM 2011), volume 6809 of LNCS, pages 583--585. Springer-Verlag, 2011.
[21]
H. Kllapi, D. Bilidas, I. Horrocks, Y. Ioannidis, E. Jiménez-Ruiz, E. Kharlamov, M. Koubarakis, and D. Zheleznyakov. Distributed Query Processing on the Cloud: the Optique Point of View (Short Paper). In OWL Experiences and Directions Workshop (OWLED 2013), 2013.
[22]
M. R. Kogalovsky. Ontology-Based Data Access Systems. Programming and Computer Software, 38(4): 167--182, 2012.
[23]
H. Lieberman, F. Paternò, and V. Wulf, editors. End User Development, volume 9 of Human-Computer Interaction Series. Springer, 2006.
[24]
S. Madden. From Databases to Big Data. IEEE Internet Computing, 16(3): 4--6, 2012.
[25]
G. Marchionini. Exploratory search: From finding to understanding. Communications of the ACM, 49(4): 41--46, 2006.
[26]
K. Munir, M. Odeh, and R. McClatchey. Ontology-driven relational query formulation using the semantic and assertional capabilities of OWL-DL. Knowledge-based Systems, 35: 144--159, 2012.
[27]
J. F. Nunameker, R. O. Briggs, and G.-J. de Vreede. From Information Technology to Value Creation Technology. In Information Technology and the Future Enterprise: New Models for Managers, pages 102--124. Prentice-Hall, New York, 2001.
[28]
M. Rodriguez-Muro and D. Calvanese. High Performance Query Answering over DL-Lite Ontologies. In Principles of Knowledge Representation and Reasoning (KR 2012), pages 308--318. AAAI Press, 2012.
[29]
M. Rodriguez-Muro and D. Calvanese. Quest, a System for Ontology Based Data Access. In OWL Experiences and Directions Workshop 2012 (OWLED 2012), volume 849 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.
[30]
F. Ruiz and J. R. Hilera. Using Ontologies in Software Engineering and Technology. In C. Calero, F. Ruiz, and M. Piattini, editors, Ontologies for Software Engineering and Software Technology, pages 49--102. Springer-Verlag, 2006.
[31]
M. C. Schraefel, M. Wilson, A. Russell, and D. A. Smith. mSpace: improving information access to multimedia domains with multimodal exploratory search. Communications of the ACM, 49(4): 47--49, 2006.
[32]
B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages. Computer, 16(8): 57--69, 1983.
[33]
M. G. Skjæveland, E. H. Lian, and I. Horrocks. Publishing the Norwegian Petroleum Directorate's FactPages as Semantic Web Data. In The Semantic Web -- ISWC 2013, volume 8219 of LNCS, 2013.
[34]
A. Soylu, F. Moedritscher, F. Wild, P. De Causmaecker, and P. Desmet. Mashups by orchestration and widget-based personal environments: Key challenges, solution strategies, and an application. Program: Electronic Library And Information Systems, 46(4): 383--428, 2012.
[35]
B. Suh and B. B. Bederson. OZONE: A Zoomable Interface for Navigating Ontology Information. In Working Conference on Advanced Visual Interfaces (AVI 2002), pages 139--143. ACM, 2002.
[36]
A. H. M. Ter Hofstede, H. A. Proper, and T. P. Van Der Weide. Query formulation as an information retrieval problem. Computer Journal, 39(4): 255--274, 1996.
[37]
D. Tunkelang and G. Marchionini. Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan and Claypool Publishers, 2009.
[38]
R. W. White, B. Kules, S. M. Drucker, and M. C. Schraefel. Supporting exploratory search. Communications of the ACM, 49(4): 37--39, 2006.
[39]
K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search and browsing. In SIGCHI Conference on Human Factors in Computing Systems (CHI 2003), pages 401--408. ACM, 2003.
[40]
C. Yu and H. V. Jagadish. Schema summarization. In 32nd international conference on Very large data bases (VLDB'06), pages 319--330. VLDB Endowment, 2006.
[41]
K. Zheng, Q. Mei, and D. A. Hanauer. Collaborative search in electronic health records. Journal of the American Medical Informatics Association, 18(3): 282--291, 2011.

Cited By

View all
  • (2024)Management of Implicit Ontology Changes Generated by Non-conservative JSON Instance Updates in the τJOWL EnvironmentAdvances in Information Systems, Artificial Intelligence and Knowledge Management10.1007/978-3-031-51664-1_15(213-226)Online publication date: 20-Jan-2024
  • (2022)$\tau\text{JOWL}$: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology Based on Temporal JSON Big DataBig Data Mining and Analytics10.26599/BDMA.2021.90200195:4(271-281)Online publication date: Dec-2022
  • (2021)GreedyBigVis – A greedy approach for preparing large datasets to multidimensional visualizationInternational Journal of Computers and Applications10.1080/1206212X.2021.192067044:8(760-769)Online publication date: 2-May-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
MEDES '13: Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems
October 2013
358 pages
ISBN:9781450320047
DOI:10.1145/2536146
  • Conference Chairs:
  • Latif Ladid,
  • Antonio Montes,
  • General Chair:
  • Peter A. Bruck,
  • Program Chairs:
  • Fernando Ferri,
  • Richard Chbeir
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

  • LBBC: Luxembourg Brazil Business Council
  • IPv6 Luxembourg Council: Luxembourg IPv6 Council
  • Luxembourg Green Business Awards 2013: Luxembourg Green Business Awards 2013
  • LUXINNOVATION: Agence Nationale pour la Promotion de l Innovation et de la Recherche
  • Pro Newtech: Pro Newtech
  • CTI: Centro de Tecnologia da Informação Renato Archer

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 October 2013

Check for updates

Author Tags

  1. big data
  2. ontologies
  3. visual query systems

Qualifiers

  • Research-article

Funding Sources

Conference

MEDES '13
Sponsor:
  • LBBC
  • IPv6 Luxembourg Council
  • Luxembourg Green Business Awards 2013
  • LUXINNOVATION
  • Pro Newtech
  • CTI

Acceptance Rates

MEDES '13 Paper Acceptance Rate 56 of 122 submissions, 46%;
Overall Acceptance Rate 267 of 682 submissions, 39%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)2
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Management of Implicit Ontology Changes Generated by Non-conservative JSON Instance Updates in the τJOWL EnvironmentAdvances in Information Systems, Artificial Intelligence and Knowledge Management10.1007/978-3-031-51664-1_15(213-226)Online publication date: 20-Jan-2024
  • (2022)$\tau\text{JOWL}$: A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology Based on Temporal JSON Big DataBig Data Mining and Analytics10.26599/BDMA.2021.90200195:4(271-281)Online publication date: Dec-2022
  • (2021)GreedyBigVis – A greedy approach for preparing large datasets to multidimensional visualizationInternational Journal of Computers and Applications10.1080/1206212X.2021.192067044:8(760-769)Online publication date: 2-May-2021
  • (2021)Heterogeneous Integration of Big Data Using Semantic Web TechnologiesIntelligent Systems in Big Data, Semantic Web and Machine Learning10.1007/978-3-030-72588-4_12(167-177)Online publication date: 29-May-2021
  • (2019)A Domain-Independent Ontology for Capturing Scientific ExperimentsInformation Search, Integration, and Personalization10.1007/978-3-030-30284-9_4(53-68)Online publication date: 24-Aug-2019
  • (2018)Readable Diagrammatic Query Language ViziQuerInformation Retrieval and Management10.4018/978-1-5225-5191-1.ch062(1389-1408)Online publication date: 2018
  • (2018)OptiqueVQSSemantic Web10.3233/SW-1802939:5(627-660)Online publication date: 1-Jan-2018
  • (2018)Big Data SemanticsJournal on Data Semantics10.1007/s13740-018-0086-27:2(65-85)Online publication date: 23-May-2018
  • (2017)LogMap+: Relational data enrichment and linked data resources matching2017 11th International Conference on Research Challenges in Information Science (RCIS)10.1109/RCIS.2017.7956546(267-275)Online publication date: May-2017
  • (2017)Multiple-Query Optimization of Regular Path Queries2017 IEEE 33rd International Conference on Data Engineering (ICDE)10.1109/ICDE.2017.205(1426-1430)Online publication date: Apr-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media