Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Domain-Independent Ontology for Capturing Scientific Experiments

  • Conference paper
  • First Online:
Information Search, Integration, and Personalization (ISIP 2018)

Abstract

Semantic web technologies have proved their usefulness in facilitating the documentation, annotation and to a certain extent the reuse and reproducibility of scientific experiments in laboratories. While useful, existing solutions suffer from some limitations when it comes to supporting scientists. Indeed, it is up to him/her to identify which ontologies to use, which fragments of those ontologies are useful for his experiments and how to combine them. Furthermore, the behavior and constraints of the domain of interest to the scientist, e.g., constraints and business rules, are not captured and as such are decoupled from the ontologies. To overcome the above limitations, we propose in this paper a methodology and underlying ontologies and solutions with the view to facilitate for the scientist the task of creating an ontology that captures the specificities of the domain of interest by combining existing well-known ontologies. Moreover, we provide the scientist with the means of specifying behavioral constraints, such as integrity constraints and business rules, with the ontology specified. We showcase our solution using a real-world case study from the field of agronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    AFO Ontologies: https://www.allotrope.org/ontologies.

  2. 2.

    FOAF Ontology : http://www.foaf-project.org.

  3. 3.

    vCard Ontology: https://www.w3.org/TR/vcard-rdf/.

  4. 4.

    RO: http://www.obofoundry.org/ontology/ro.html.

  5. 5.

    ENVO Ontology: https://bioportal.bioontology.org/ontologies/ENVO.

  6. 6.

    OBO Foundry: http://www.obofoundry.org.

  7. 7.

    Scientific Experiments Core Ontology: https://github.com/aloulen/SECO.

  8. 8.

    CC BY 4.0: http://creativecommons.org/licenses/by/4.0/.

  9. 9.

    PATO Ontology: http://www.obofoundry.org/ontology/pato.html.

  10. 10.

    QUDT Ontologies: http://www.qudt.org/release2/qudt-catalog.html.

  11. 11.

    Scientific Experiments Agronomy Ontology: https://github.com/aloulen/SECO_AGRO.

  12. 12.

    AgiLab is a software development company that provides information systems (LIMS) for managing the activities of research and development laboratories in different domains of activity.

  13. 13.

    eSciDoc : https://www.escidoc.org.

  14. 14.

    OBI Ontology: http://obi-ontology.org.

  15. 15.

    Allotrope Foundation : https://www.allotrope.org/about-us.

  16. 16.

    OBO Foundry best practices: http://www.obofoundry.org/principles/fp-000-summary.html.

References

  1. Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology. MIT Press, Cambridge (2015)

    Book  Google Scholar 

  2. Brahaj, A., Razum, M., Schwichtenberg, F.: Ontological formalization of scientific experiments based on core scientific metadata model. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 273–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33290-6_29

    Chapter  Google Scholar 

  3. Brinkman, R.R., et al.: Modeling biomedical experimental processes with OBI. J. Biomed. Semant. 1, S7 (2010). BioMed Central

    Article  Google Scholar 

  4. Ciccarese, P., Ocana, M., Castro, L.J.G., Das, S., Clark, T.: An open annotation ontology for science on web 3.0. J. Biomed. Semant. 2, S4 (2011). BioMed Central

    Article  Google Scholar 

  5. Das, S.: R2RML: RDB TO RDF mapping language (2011). http://www.w3.org/TR/r2rml/

  6. Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36(suppl–1), D344–D350 (2007)

    Article  Google Scholar 

  7. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  8. Fritzsche, D., et al.: Ontology summit 2016 communique: ontologies within semantic interoperability ecosystems. Appl. Ontol. 12(2), 91–111 (2017)

    Article  Google Scholar 

  9. González-Beltrán, A., Maguire, E., Sansone, S.A., Rocca-Serra, P.: linkedISA: semantic representation of ISA-TAB experimental metadata. BMC Bioinf. 15(14), S4 (2014)

    Article  Google Scholar 

  10. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum Comput Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  11. Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best practices and ontology engineering applied to Internet of Things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 412–417. IEEE (2015)

    Google Scholar 

  12. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: a visual query notation for linked data. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 387–402. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_51

    Chapter  Google Scholar 

  13. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C Recomm. 21(10), 778 (2013)

    Google Scholar 

  14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: SWRL: a semantic web rule language combining owl and RuleML. W3C Memb. Submiss. 21, 79 (2004)

    Google Scholar 

  15. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1999)

    Google Scholar 

  16. Vazquez-Naya, J.M., et al.: Ontologies of drug discovery and design for neurology, cardiology and oncology. Curr. Pharm. Des. 16(24), 2724–2736 (2010)

    Article  Google Scholar 

  17. Rocca-Serra, P., et al.: ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics 26(18), 2354–2356 (2010)

    Article  Google Scholar 

  18. Simperl, E.: Reusing ontologies on the semantic web: a feasibility study. Data Knowl. Eng. 68(10), 905–925 (2009)

    Article  Google Scholar 

  19. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251 (2007)

    Article  Google Scholar 

  20. Soldatova, L.N., King, R.D.: An ontology of scientific experiments. J. R. Soc. Interface 3(11), 795–803 (2006)

    Article  Google Scholar 

  21. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: OptiqueVQS: towards an ontology-based visual query system for big data. In: Proceedings of the Fifth International Conference on Management of Emergent Digital EcoSystems, pp. 119–126. ACM (2013)

    Google Scholar 

  22. Stoeckert, C.J., Parkinson, H.: The MGED ontology: a framework for describing functional genomics experiments. Int. J. Genomics 4(1), 127–132 (2003)

    Google Scholar 

  23. Vandenbussche, P.Y., Vatant, B.: Metadata recommendations for linked open data vocabularies. Version 1, 2011–2012 (2011)

    Google Scholar 

  24. Visser, U., Abeyruwan, S., Vempati, U., Smith, R.P., Lemmon, V., Schürer, S.C.: Bioassay ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC Bioinf. 12(1), 257 (2011)

    Article  Google Scholar 

  25. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakariae Aloulen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aloulen, Z., Belhajjame, K., Grigori, D., Acker, R. (2019). A Domain-Independent Ontology for Capturing Scientific Experiments. In: Kotzinos, D., Laurent, D., Spyratos, N., Tanaka, Y., Taniguchi, Ri. (eds) Information Search, Integration, and Personalization. ISIP 2018. Communications in Computer and Information Science, vol 1040. Springer, Cham. https://doi.org/10.1007/978-3-030-30284-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30284-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30283-2

  • Online ISBN: 978-3-030-30284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics