Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2463676.2463717acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Efficient ad-hoc search for personalized PageRank

Published: 22 June 2013 Publication History

Abstract

Personalized PageRank (PPR) has been successfully applied to various applications. In real applications, it is important to set PPR parameters in an ad-hoc manner when finding similar nodes because of dynamically changing nature of graphs. Through interactive actions, interactive similarity search supports users to enhance the efficacy of applications. Unfortunately, if the graph is large, interactive similarity search is infeasible due to its high computation cost. Previous PPR approaches cannot effectively handle interactive similarity search since they need precomputation or approximate computation of similarities. The goal of this paper is to efficiently find the top-k nodes with exact node ranking so as to effectively support interactive similarity search based on PPR. Our solution is Castanet. The key Castanet operations are (1) estimate upper/lower bounding similarities iteratively, and (2) prune unnecessary nodes dynamically to obtain top-k nodes in each iteration. Experiments show that our approach is much faster than existing approaches.

References

[1]
E. Agirre and A. Soroa. Personalizing PageRank for Word Sense Disambiguation. In EACL, pages 33--41, 2009.
[2]
K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and M. Sokol. Quick Detection of Top-k Personalized PageRank Lists. In WAW, pages 50--61, 2011.
[3]
B. Bahmani, K. Chakrabarti, and D. Xin. Fast Personalized PageRank on MapReduce. In SIGMOD Conference, pages 973--984, 2011.
[4]
B. Bahmani, A. Chowdhury, and A. Goel. Fast Incremental and Personalized PageRank. PVLDB, 4(3):173--184, 2010.
[5]
A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-based Deyword Search in Databases. In VLDB, pages 564--575, 2004.
[6]
S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. A. Grossman, and O. Frieder. Hourly Analysis of a Very Sarge Topically Categorized Web Query Log. In SIGIR, pages 321--328, 2004.
[7]
B. Carterette, J. Allan, and R. K. Sitaraman. Minimal Test Collections for Retrieval Evaluation. In SIGIR, pages 268--275, 2006.
[8]
S. Chakrabarti, A. Pathak, and M. Gupta. Index Design and Query Processing for Graph Conductance Search. VLDB J., 20(3):445--470, 2011.
[9]
J. Cho and U. Schonfeld. RankMass Crawler: A Crawler with High PageRank Coverage Guarantee. In VLDB, pages 375--386, 2007.
[10]
J. Domènech, J. A. Gil, J. Sahuquillo, and A. Pont. Using Current Web Page Structure to Improve Prefetching Performance. Computer Networks, 54(9):1404--1417, 2010.
[11]
M. Eirinaki and M. Vazirgiannis. Usage-based PageRank for Web Personalization. In ICDM, pages 130--137, 2005.
[12]
D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experiments. Internet Mathematics, 2(3), 2005.
[13]
Y. Fujiwara, G. Irie, and T. Kitahara. Fast Algorithm for Affinity Propagation. In IJCAI, pages 2238--2243, 2011.
[14]
Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast and Exact Top-k Search for Random Walk With Restart. PVLDB, 5(5):442--453, 2012.
[15]
Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka. Efficient Search Algorithm for SimRank. In ICDE, 2013.
[16]
Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka. Efficient Personalized PageRank with Accuracy Assurance. In KDD, 2012.
[17]
Y. Z. Guo, K. Ramamohanarao, and L. A. F. Park. Personalized PageRank for Web Page Prediction Based on Access Time-length and Frequency. In Web Intelligence, pages 687--690, 2007.
[18]
M. S. Gupta, A. Pathak, and S. Chakrabarti. Fast Algorithms for Top-k Personalized PageRank Queries. In WWW, pages 1225--1226, 2008.
[19]
D. A. Harville. Matrix Algebra From a Statistician's Perspective. Springer, 2008.
[20]
G. Jeh and J. Widom. Scaling Ppersonalized Web Search. In WWW, pages 271--279, 2003.
[21]
R. Jin, N. Ruan, S. Dey, and J. X. Yu. SCARAB: Scaling Reachability Computation on Large Graphs. In SIGMOD Conference, pages 169--180, 2012.
[22]
U. Kang, D. H. Chau, and C. Faloutsos. Mining Large Graphs: Algorithms, Inference, and Discoveries. In ICDE, pages 243--254, 2011.
[23]
A. N. Langville and C. D. Meyer. Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, 2006.
[24]
J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD, pages 177--187, 2005.
[25]
R. Mihalcea. Unsupervised Large-vocabulary Word Sense Disambiguation with Graph-based Algorithms for Sequence Data Labeling. In HLT/EMNLP, 2005.
[26]
M. Nakatsuji, Y. Fujiwara, T. Uchiyama, and K. Fujimura. User Similarity from Linked Taxonomies: Subjective Assessments of Items. In IJCAI, pages 2305--2311, 2011.
[27]
M. Nakatsuji, Y. Fujiwara, T. Uchiyama, and H. Toda. Collaborative Filtering by Analyzing Dynamic User Interests Modeled by Taxonomy. In ISWC, pages 361--377, 2012.
[28]
R. Navigli. Word Sense Disambiguation: A Survey. ACM Comput. Surv., 41(2), 2009.
[29]
L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999--66, Stanford InfoLab, November 1999.
[30]
J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic Multimedia Cross-modal Correlation Discovery. In KDD, pages 653--658, 2004.
[31]
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: A Database and Web-based Tool for Image Annotation. International Journal of Computer Vision, 77(1-3):157--173, 2008.
[32]
H. Shiokawa, Y. Fujiwara, and M. Onizuka. Fast Algorithm for Modularity-based Graph Clustering. In AAAI, 2013.
[33]
H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random Walk with Restart and Its Applications. In ICDM, pages 613--622, 2006.
[34]
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with Local and Global Consistency. In NIPS, 2003.

Cited By

View all
  • (2024)Efficient Algorithms for Personalized PageRank Computation: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337600036:9(4582-4602)Online publication date: Sep-2024
  • (2023)Zebra: When Temporal Graph Neural Networks Meet Temporal Personalized PageRankProceedings of the VLDB Endowment10.14778/3583140.358315016:6(1332-1345)Online publication date: 20-Apr-2023
  • (2023)GERWkNN: GPU-accelerated Exact Random Walk-based kNN Query in Large GraphsProceedings of the 2023 5th International Conference on Big Data Engineering10.1145/3640872.3640880(47-54)Online publication date: 17-Nov-2023
  • Show More Cited By

Index Terms

  1. Efficient ad-hoc search for personalized PageRank

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '13: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data
    June 2013
    1322 pages
    ISBN:9781450320375
    DOI:10.1145/2463676
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 June 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. graph database
    2. personalized pagerank
    3. top-k search

    Qualifiers

    • Research-article

    Conference

    SIGMOD/PODS'13
    Sponsor:

    Acceptance Rates

    SIGMOD '13 Paper Acceptance Rate 76 of 372 submissions, 20%;
    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)21
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 21 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficient Algorithms for Personalized PageRank Computation: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337600036:9(4582-4602)Online publication date: Sep-2024
    • (2023)Zebra: When Temporal Graph Neural Networks Meet Temporal Personalized PageRankProceedings of the VLDB Endowment10.14778/3583140.358315016:6(1332-1345)Online publication date: 20-Apr-2023
    • (2023)GERWkNN: GPU-accelerated Exact Random Walk-based kNN Query in Large GraphsProceedings of the 2023 5th International Conference on Big Data Engineering10.1145/3640872.3640880(47-54)Online publication date: 17-Nov-2023
    • (2023)Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo ApproachesProceedings of the ACM on Management of Data10.1145/35893051:2(1-26)Online publication date: 20-Jun-2023
    • (2023)Personalized PageRank on Evolving Graphs with an Incremental Index-Update SchemeProceedings of the ACM on Management of Data10.1145/35887051:1(1-26)Online publication date: 30-May-2023
    • (2023)Effective and Scalable Manifold Ranking-Based Image Retrieval with Output BoundACM Transactions on Knowledge Discovery from Data10.1145/356557417:5(1-31)Online publication date: 7-Apr-2023
    • (2022)Efficient Distributed Clustering Algorithms on Star-Schema Heterogeneous GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2020.304763134:10(4781-4796)Online publication date: 1-Oct-2022
    • (2021)Massively parallel algorithms for personalized pagerankProceedings of the VLDB Endowment10.14778/3461535.346155414:9(1668-1680)Online publication date: 22-Oct-2021
    • (2021)TURLProceedings of the VLDB Endowment10.14778/3430915.343092114:3(307-319)Online publication date: 9-Dec-2021
    • (2021)Systematic Mutation-Based Evaluation of the Soundness of Security-Focused Android Static Analysis TechniquesACM Transactions on Privacy and Security10.1145/343980224:3(1-37)Online publication date: 9-Feb-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media