Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Counting Linear Extensions of Posets with Determinants of Hook Lengths

Published: 01 January 2021 Publication History

Abstract

We introduce a class of posets, which includes both ribbon posets (skew shapes) and $d$-complete posets, such that their number of linear extensions is given by a determinant of a matrix whose entries are products of hook lengths. We also give $q$-analogues of this determinantal formula in terms of the major index and inversion statistics. As applications, we give families of tree posets whose numbers of linear extensions are given by generalizations of Euler numbers, we draw relations to Naruse and Okada's positive formulas for the number of linear extensions of skew $d$-complete posets, and we give polynomiality results analogous to those of descent polynomials by Diaz-López, Harris, Insko, Omar, and Sagan.

References

[1]
A. C. Aitken, The monomial expansion of determinantal symmetric functions, Proc. Roy. Soc. Edinburgh Sect. A, 61 (1943), pp. 300--310.
[2]
M. D. Atkinson, On computing the number of linear extensions of a tree, Order, 7 (1990), pp. 23--25.
[3]
A. Björner and M. L. Wachs, q-hook length formulas for forests, J. Combin. Theory Ser. A, 52 (1989), p. 165--187, https://doi.org/10.1016/0097-3165(89)90028-9.
[4]
A. Björner and M. L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, 58 (1991), pp. 85--114, https://doi.org/10.1016/0097-3165(91)90075-R.
[5]
G. Brightwell and P. Winkler, Counting linear extensions, Order, 8 (1991), pp. 225--242, https://doi.org/10.1007/BF00383444.
[6]
A. Diaz-Lopez, P. E. Harris, E. Insko, M. Omar, and B. E. Sagan, Descent polynomials, Discrete Math., 342 (2019), pp. 1674--1686.
[7]
S. Dittmer and I. Pak, Counting Linear Extensions of Restricted Posets, https://arxiv.org/abs/1802.06312, 2018.
[8]
T. Dwyer and S. Elizalde, Wilf equivalence relations for consecutive patterns, Adv. in Appl. Math., 99 (2018), pp. 134--157, https://doi.org/10.1016/j.aam.2018.04.007.
[9]
H. O. Foulkes, Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math., 15 (1976), pp. 235--252, https://doi.org/10.1016/0012-365X(76)90028-5.
[10]
J. S. Frame, G. de. B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group, Canad. J. Math., 6 (1954), pp. 316--324.
[11]
A. Garver, K. Igusa, J. Matherne, and J. Ostroff, Combinatorics of exceptional sequences in type A, Electron. J. Combin., 26 (2019), pp. 1--20.
[12]
I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, 64 (1993), pp. 189--215.
[13]
S. Grosser, Determinant Formulas for Counting Linear Extensions of Tree Posets, Undergraduate honors thesis, UMass, Amherst, 2018, https://people.math.umass.edu/~ahmorales/mentoring/thesis_Grosser.pdf.
[14]
P. Jiradilok and T. McConville, Roots of Descent Polynomials and an Algebraic Inequality on Hook Lengths, https://arxiv.org/abs/1910.14631, 2019.
[15]
J. S. Kim and M. Yoo, Hook length property of $d$-complete posets via $q$-integrals, J. Combin. Theory Ser. A, 162 (2019), pp. 167--221, https://doi.org/10.1016/j.jcta.2018.11.003.
[16]
D. E. Knuth, The Art of Computer Programming Volume 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1998.
[17]
P. A. MacMahon, Combinatory Analysis Volumes I, II Bound in One Volume, Dover Phoenix Editions, Dover, Mineola, NY, 2004.
[18]
R. H. Möhring, Computationally tractable classes of ordered sets, in Algorithms and Order, Springer, New York, 1989, pp. 105--193.
[19]
A. H. Morales, I. Pak, and G. Panova, Hook formulas for skew shapes I. $q$-analogues and bijections, J. Combin. Theory Ser. A, 154 (2018), pp. 350--405, https://doi.org/10.1016/j.jcta.2017.09.002.
[20]
H. Naruse and S. Okada, Skew hook formula for $d$-complete posets via equivariant $k$-theory, Algebr. Combin., 2 (2019), pp. 541--571, https://doi.org/10.5802/alco.54.
[21]
G. Park, Naruse hook formula for linear extensions of mobile posets, in preparation.
[22]
R. A. Proctor, Dynkin diagram classification of $\lambda$-minuscule Bruhat lattices and of $d$-complete posets, J. Algebraic Combin., 9 (1999), pp. 61--94, https://doi.org/10.1023/A:1018615115006.
[23]
R. A. Proctor, Minuscule elements of Weyl groups, the numbers game, and $d$-complete posets, J. Algebra, 213 (1999), pp. 272--303, https://doi.org/10.1006/jabr.1998.7648.
[24]
R. A. Proctor, $d$-complete posets generalize Young diagrams for the hook product formula: Partial presentation of proof, RIMS Kôkyûroku, 1913 (2014), pp. 120--140.
[25]
R. A. Proctor and L. M. Scoppetta, $d$-complete posets: Local structural axioms, properties, and equivalent definitions, Order, 36 (2019), pp. 399--422, https://doi.org/10.1007/s11083-018-9473-4.
[26]
N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[27]
R. P. Stanley, Theory and application of plane partitions. Part 2, Stud. Appl. Math., 50 (1971), pp. 259--279.
[28]
R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combin. Theory Ser. A, 20 (1976), pp. 336--356, https://doi.org/10.1016/0097-3165(76)90028-5.
[29]
R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, UK, 1999.
[30]
R. P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd ed., Cambridge University Press, Cambridge, UK, 2012.
[31]
R. M. Thrall, A combinatorial problem, Michigan Math. J., 1 (1952), pp. 81--88, http://projecteuclid.org/euclid.mmj/1028989731.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 35, Issue 1
DOI:10.1137/sjdmec.35.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2021

Author Tags

  1. posets
  2. descents
  3. linear extensions
  4. determinants
  5. hook lengths
  6. D-complete posets

Author Tags

  1. 06A07
  2. 05A15
  3. 05A30
  4. 05A05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media