Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

d-Complete Posets: Local Structural Axioms, Properties, and Equivalent Definitions

  • Published:
Order Aims and scope Submit manuscript

Abstract

Although d-complete posets arose along the interface between algebraic combinatorics and Lie theory, they are defined using only requirements on their local structure. These posets are a mutual generalization of rooted trees, shapes, and shifted shapes. They possess Stanley’s hook product property for their P-partition generating functions and Schützenberger’s well-defined jeu de taquin rectification property. The original definition of d-complete poset was lengthy, but more succinct definitions were later developed. Here several definitions are shown to be equivalent. The basic properties of d-complete posets are summarized. Background and a partial bibliography for these posets is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buch, A., Samuel, M.: K-theory of minuscule varieties. J. Reine Angew. Math. 719, 133–171 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Carrell, J.: Vector fields, flag varieties, and Schubert calculus. In: Proceedings of the Hyderabad Conference on Algebraic Groups, pp. 23–57. Manoj Prakashan Madras Ramanan, S. (ed.) (1991)

  3. Chaput, P.-E., Perrin, N.: Towards a Littlewood-Richardson rule for Kac-Moody homogeneous spaces. J. Lie Theory 22, 17–80 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets: Concepts, Results and Uses. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  5. Gann, C., Proctor, R. Chapel Hill Poset Atlas. www.unc.edu/∼lowrap/Posets (2005)

  6. Green, R.M.: Combinatorics of Minuscule Representations. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  7. Ilango, R., Pechenik, O., Zlatin, M.: Unique rectification in d-complete posets: towards the K-theory of Kac-Moody flag varieties. arXiv:1805.02287

  8. Ishikawa, M.: (q,t)-hook formula for birds. RIMS Kôkyûroku 1913, 47–66 (2014)

    Google Scholar 

  9. Ishikawa, M., Tagawa, H.: Determinants and Pfaffians associated with d-complete posets. RIMS Kôkyûroku 1262, 101–136 (2002)

    MathSciNet  Google Scholar 

  10. Ishikawa, M., Tagawa, H.: Leaf posets and multivariate hook length property. RIMS Kôkyûroku 1913, 67–80 (2014)

    Google Scholar 

  11. Kawanaka, N.: Sato-welter game and Kac-Moody Lie algebras. RIMS Kôkyûroku 1190, 95–106 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Kawanaka, N.: Games and algorithms with hook structure. Sugaku Expositions 28, 73–93 (2015)

    MathSciNet  Google Scholar 

  13. Kim, J.S., Yoo, M.: Hook length property of d-complete posets via q-integrals, arXiv:1708.09109

  14. Kleshchev, A., Ram, A.: Homogeneous representations of Khovanov-Lauda algebras. J. Eur. Math. Soc. 12, 1293–1306 (2010)

    Article  MathSciNet  Google Scholar 

  15. Konvalinka, M.: The weighted hook length formula III: Shifted tableaux, vol. 18 (2011)

  16. Lax, D.: Order Filter Model for Minuscule Plücker Relations, to Appear in 28th Inter. Conf. on Formal Power Series and Algebraic Combins (FPSAC 2016). Discrete Math. Theor. Comput. Sci. Proc

  17. Nakada, K.: Colored hook formula for a generalized Young diagram. Osaka J. Math. 45, 1085–1120 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Nakada, K.: Q-Hook formula of Gansner type for a generalized Young diagram. In: 21st Inter. Conf. on Formal Power Series and Algebraic Combins. (FPSAC 2009), vol. 685–696. Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009)

  19. Nakada, K.: Generalization of Young diagrams and hook formula. RIMS Kôkyûroku 1913, 106–111 (2014)

    Google Scholar 

  20. Nakada, K., Okamura, S.: An algorithm which generates linear extensions for a generalized Young diagram with uniform probability. In: 22nd Inter. Conf. on Formal Power Series and Algebraic Combins (FPSAC 2010), vol. 933–939. Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2010)

  21. Naruse, H., Okada, S.: Skew hook formula for d-complete posets, arXiv:1802.09748

  22. Okada, S.: (q,t)-Deformations of multivariate hook product formulae. J. Algebr. Combinatorics 32, 399–416 (2010)

    Article  MathSciNet  Google Scholar 

  23. Okamura, S.: An Algorithm Which Generates, Uniform Randomly, Standard Young Tableaux in a Generalized Sense (Japanese). Master’s thesis, Osaka University (2003)

  24. Proctor, R.: Bruhat lattices, plane partition generating functions, and minuscule representations. Europ. J. Combinatorics 5, 331–350 (1984)

    Article  MathSciNet  Google Scholar 

  25. Proctor, R.: Poset partitions and minuscule representations: External construction of Lie representations. Part I, unpublished manuscript (1993)

  26. Proctor, R.: Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets. J. Algebraic Combinatorics 9, 61–94 (1999)

    Article  MathSciNet  Google Scholar 

  27. Proctor, R.: Minuscule elements of Weyl groups, the numbers game, and d-complete posets. J. Algebra 213, 272–303 (1999)

    Article  MathSciNet  Google Scholar 

  28. Proctor, R.: d-complete posets generalize Young diagrams for the jeu de taquin property. ArXiv:0905.3716

  29. Proctor, R.: d-complete posets generalize Young diagrams for the hook product formula: Partial presentation of proof. RIMS Kôkyûroku 1913, 120–140 (2014)

    Google Scholar 

  30. Riegler, L., Neumann, C.: Playing jeu de taquin on d-complete posets. sém. Loth. Combin. 74, Art B74d (2016)

  31. Stanley, R.: Ordered structures and partitions. Mem. Amer. Math. Soc. 119, 1–104 (1972)

    MathSciNet  MATH  Google Scholar 

  32. Stanley, R.: Enumerative Combinatorics, 2nd edn., vol. I. Cambridge University Press, New York (2012)

  33. Stembridge, J.: Minuscule elements of Weyl groups. J. Algebra 235, 722–743 (2001)

    Article  MathSciNet  Google Scholar 

  34. Strayer, M.: Unified characterizations of minuscule Kac-Moody representations built from colored posets. arXiv:1808.05200

Download references

Acknowledgements

We thank Soichi Okada, Alexander Kleshchev, and Arun Ram for their help on Section 12, and Michael Strayer and the referee for helpful remarks on the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Proctor.

Additional information

This paper is based upon an April 2015 UNC Chapel Hill Masters project by Lindsey M. Scoppetta that was cowritten with project advisor Robert A. Proctor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proctor, R.A., Scoppetta, L.M. d-Complete Posets: Local Structural Axioms, Properties, and Equivalent Definitions. Order 36, 399–422 (2019). https://doi.org/10.1007/s11083-018-9473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-018-9473-4

Keywords

Navigation