Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A Collision Avoidance Identification Algorithm for Mobile RFID Device

Published: 01 November 2019 Publication History

Abstract

Radio Frequency Identification (RFID) is a widely used wireless communication technology. In terms of mobile RFID tags, the relative position between the tags and the reader changes, and consumers can obtain product-related information in tags by using readers. Anti-collision is an important scheme for readers to identify RFID tags. Tag estimation is at the core of the efficient anti-collision process, especially when tags move. In this paper, we propose a Mobile tags Identification Procedure model (MTIP), and establish a feasible mobile tags estimation model based on MTIP. In the mobile tags estimation model, we use superposition principle of Poisson process to solve the tag estimation problem. Based on these models, a new anti-collision algorithm specifically for the mobile RFID tags is proposed. Performance evaluation shows that the proposed algorithm significantly outperforms classical Q algorithm of the Electronic Product Code Class-1 Generation-2 system (EPC-C1G2) and the recent Symbolic Single Resolution Blocking (SSRB) algorithm in terms of success-rate and achieves similar efficiency for static RFID system.

References

[1]
Q. Lin, L. Yang, C. Duan, and Y. Liu, “Revisiting reading rate with mobility: Rate-adaptive reading of cots RFID systems,” IEEE Trans. Mobile Comput., vol. 18, no. 7, pp. 1631–1646, Jul. 2019. 10.1109/TMC.2018.2864936.
[2]
J. Kim and H. Kim, “E-pedigree discovery system and its verification service for consumer’s mobile RFID device,” in Proc. IEEE Int. Symp. Consum. Electron., Irving, TX, USA, Jun. 2007, pp. 1–4. 10.1109/isce.2007.4382171.
[3]
J. Yu, W. Lee, and D.-Z. Du, “Reducing reader collision for mobile RFID,” IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 574–582, May 2011. 10.1109/tce.2011.5955194.
[4]
W. Gong, J. Liu, and Z. Yang, “Efficient unknown tag detection in large-scale RFID systems with unreliable channels,” IEEE Trans. Netw., vol. 25, no. 4, pp. 2528–2539, Aug. 2017. 10.1109/tnet.2017.2699683.
[5]
D.-H. Shih, P.-L. Sun, D. C. Yen, and S.-M. Huang, “Taxonomy and survey of RFID anti-collision protocols,” Comput. Commu., vol. 29, no. 11, pp. 2150–2166, Nov. 2006. 10.1016/j.comcom.2005.12.011.
[6]
J. Waldrop, D. W. Engels, and S. E. Sarma, “Color wave: A MAC for RFID reader networks,” in Proc. IEEE Wireless Commun. Netw. Conf., New Orleans, LA, USA, Mar. 2003, pp. 1206–1210. 10.1109/wcnc.2003.1200643.
[7]
J. Ho, D. W. Engels, and S. E. Sarma, “HiQ: A hierarchical Q-learning algorithm to solve the reader collision problem,” in Proc. Int. Symp. Appl. Internet Workshop, Phoenix, AZ, USA, Jan. 2006, pp. 88–91. 10.1109/saint-w.2006.20.
[8]
S. M. Birari and S. Iyer, “PULSE: A MAC protocol for RFID networks,” in Proc. Int. Workshop Ubiquitous Sens. Netw., Montreal, QC, Canada, Dec. 2005, pp. 1036–1046. 10.1007/11596042_106.
[9]
C. Law, K. Lee, and K.-Y. Siu, “Efficient memory-less protocol for tag identification,” in Proc. 4th Int. Workshop Discr. Algorithms Methods Mobile Comput. Commun., Boston, MA, USA, Aug. 2000, pp. 75–84. 10.1145/345848.345865.
[10]
J. Myung, W. Lee, and J. Srivastava, “Adaptive binary splitting for efficient RFID tag anti-collision,” IEEE Commun. Lett., vol. 10, no. 3, pp. 144–146, Mar. 2006. 10.1109/lcomm.2006.1603365.
[11]
D. R. Hush and C. Wood, “Analysis of tree algorithms for RFID arbitration,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, Aug. 1998, p. 107. 10.1109/isit.1998.708695.
[12]
Y.-C. Lai and C.-C. Lin, “Two blocking algorithms on adaptive binary splitting: Single and pair resolutions for RFID tag identification,” IEEE Trans. Netw., vol. 17, no. 3, pp. 962–975, Jun. 2009. 10.1109/tnet.2008.2002558.
[13]
J.-S. Li and Y.-M. Huo, “An efficient time-bound collision prevention scheme for RFID re-entering tags,” IEEE Trans. Mobile Comput., vol. 12, no. 6, pp. 1054–1064, Jun. 2013. 10.1109/tmc.2012.68.
[14]
R. Jayadi, Y.-C. Lai, and C.-C. Lin, “Efficient time-oriented anti-collision protocol for RFID tag identification,” Comput. Commu., vol. 112, no. 1, pp. 141–153, Nov. 2017. 10.1016/j.comcom.2017.08.016.
[15]
M. Chu, Z. Qian, and X. Wang, “A multi-tag anti-collision protocol based on 8-ary adaptive pruning query tree,” Int. J. Distrib. Sensor Netw., vol. 14, no. 11, pp. 1–18, Nov. 2018. 10.1177/1550147718811823.
[16]
X. Jia, Q. Feng, and L. Yu, “Stability analysis of an efficient anti-collision protocol for RFID tag identification,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2285–2294, Aug. 2012. 10.1109/tcomm.2012.051512.110448.
[17]
EPC Radio Frequency Identity Protocols Class-1 Generation-2UHF RFID Protocol for Communications at 860 MHz–960 MHz, Version 1.2.0, EPCglobal Inc., Cambridge, U.K., 2008.
[18]
F. C. Schoute, “Dynamic frame length ALOHA,” IEEE Trans. Commun., vol. COM-31, no. 4, pp. 565–568, Apr. 1983. 10.1109/tcom.1983.1095854.
[19]
L. Xie, B. Sheng, C. C. Tan, H. Han, Q. Li, and D. Chen, “Efficient tag identification in mobile RFID systems,” in Proc. IEEE Conf. Comput. Commun., San Diego, CA, USA, Mar. 2010, pp. 1–9. 10.1109/infcom.2010.5461949.
[20]
C. Yihong, Q. Feng, Z. Ma, and T. Liu, “Multiple-bits-slot reservation ALOHA protocol for tag identification,” IEEE Trans. Consum. Electron., vol. 59, no. 1, pp. 93–100, Feb. 2013. 10.1109/tce.2013.6490246.
[21]
L. Zhu and T.-S. P. Yum, “Optimal framed ALOHA based anti-collision algorithms for RFID systems,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3583–3592, Dec. 2010. 10.1109/tcomm.2011.102910.090390.
[22]
H. Vogt, “Multiple object identification with passive RFID tags,” in Proc. IEEE Int. Conf. Syst. Man Cybern., Oct. 2002, pp. 6–12. 10.1109/icsmc.2002.1176119.
[23]
M. V. Bueno-Delgado and J. Vales-Alonso, “On the optimal frame-length configuration on real passive RFID systems,” J. Netw. Comput. Appl., vol. 34, no. 3, pp. 864–876, May 2011. 10.1016/j.jnca.2010.04.022.
[24]
P. Šolić, J. Radić, and N. Rožić, “Early frame break policy for ALOHA-based RFID systems,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 876–881, Apr. 2016. 10.1109/tase.2015.2408372.
[25]
J. Garrido and Y. Lu, “On double pariodic non-homogeneous Poisson processes,” Bull. Assoc. Swiss Actuaries, vol. 2, pp. 195–212, Jul. 2004.

Cited By

View all
  • (2024)KeyStubProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314427:4(1-23)Online publication date: 12-Jan-2024
  • (2023)High-Accuracy and Fine-Granularity Human Activity Recognition Method Based on Body RFID SkeletonIEEE Transactions on Consumer Electronics10.1109/TCE.2023.334075270:1(1040-1051)Online publication date: 8-Dec-2023
  • (2023)ReLAC: Revocable and Lightweight Access Control With Blockchain for Smart Consumer ElectronicsIEEE Transactions on Consumer Electronics10.1109/TCE.2023.327965270:1(3994-4004)Online publication date: 30-May-2023
  • Show More Cited By

Index Terms

  1. A Collision Avoidance Identification Algorithm for Mobile RFID Device
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Consumer Electronics
    IEEE Transactions on Consumer Electronics  Volume 65, Issue 4
    Nov. 2019
    92 pages

    Publisher

    IEEE Press

    Publication History

    Published: 01 November 2019

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)KeyStubProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314427:4(1-23)Online publication date: 12-Jan-2024
    • (2023)High-Accuracy and Fine-Granularity Human Activity Recognition Method Based on Body RFID SkeletonIEEE Transactions on Consumer Electronics10.1109/TCE.2023.334075270:1(1040-1051)Online publication date: 8-Dec-2023
    • (2023)ReLAC: Revocable and Lightweight Access Control With Blockchain for Smart Consumer ElectronicsIEEE Transactions on Consumer Electronics10.1109/TCE.2023.327965270:1(3994-4004)Online publication date: 30-May-2023
    • (2023)Fenceless Collision-Free Avoidance Driven by Visual Computation for an Intelligent Cyber–Physical System Employing Both Single- and Double-S TrajectoryIEEE Transactions on Consumer Electronics10.1109/TCE.2023.326829669:3(622-639)Online publication date: 1-Aug-2023
    • (2021)A Fast Hybrid Strategy-Based RFID Tag Identification ProtocolWireless Communications & Mobile Computing10.1155/2021/66468122021Online publication date: 1-Jan-2021

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media