Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Theorem Proving Modulo

Published: 01 September 2003 Publication History

Abstract

Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of general interest because it permits one to separate computations and deductions in a clean way. The first contribution of this paper is to define a sequent calculus modulo that gives a proof-theoretic account of the combination of computations and deductions. The congruence on propositions is handled through rewrite rules and equational axioms. Rewrite rules apply to terms but also directly to atomic propositions.
The second contribution is to give a complete proof search method, called extended narrowing and resolution (ENAR), for theorem proving modulo such congruences. The completeness of this method is proved with respect to provability in sequent calculus modulo.
An important application is that higher-order logic can be presented as a theory in deduction modulo. Applying the ENAR method to this presentation of higher-order logic subsumes full higher-order resolution.

References

[1]
Abadi M., Cardelli L., Curien P.-L., and Lévy J.-J. Explicit substitutions J. Funct. Programming 1991 1 4 375-416
[2]
Andrews P. B. Resolution in type theory J. Symbolic Logic 1971 36 414-432
[3]
Baader, F. and Nipkow, T.: Term Rewriting and All That, Cambridge University Press, 1998.
[4]
Bachmair L. Proof methods for equational theories 1987 Urbana-Champaign, IL University of Illinois
[5]
Bachmair L., Ganzinger H., Lynch C., and Snyder W. Basic paramodulation Inform. and Comput. 1995 121 2 172-192
[6]
Barendregt H. and Barendsen E. Autartik computations in formal proofs J. Automated Reasoning 2002 28 3 321-336
[7]
Bürckert H.-J. Stickel M. E. A resolution principle for clauses with constraints Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany) 1990 New York Springer-Verlag 178-192
[8]
Bürckert, H.-J.: A Resolution Principle for a Logic with Restricted Quantifiers, Lecture Notes in Artificial Intelligence 568, Springer-Verlag, 1991.
[9]
Curien P.-L., Hardin T., and Lévy J.-J. Confluence properties of weak and strong calculi of explicit substitutions J. ACM 1996 43 2 362-397
[10]
Degtyarev, A. and Voronkov, A.: Equality reasoning in sequent-based calculi, in A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Vol. I, Elsevier, 2001, Chapt. 10, pp. 611-706.
[11]
Dershowitz, N. and Jouannaud, J.-P.: Rewrite systems, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier (North-Holland), 1990, Chapt. 6, pp. 244-320.
[12]
Dowek, G.: Lambda-calculus, combinators and the comprehension scheme, in M. Dezan-Ciancaglini and G. Plotkin (eds.), Typed Lambda Calculi and Applications, Lecture Notes in Comput. Sci. 902, 1995, pp. 154-170.
[13]
Dowek, G.: Proof normalization for a first-order formulation of higher-order logic, in E. Gunter and A. Felty (eds.), Theorem Proving in Higher Order Logics, Lecture Notes in Comput. Sci. 1275, 1997, pp. 105-119.
[14]
Dowek, G.: La Part du Calcul, Université de Paris 7, Mémoire d'habilitation, 1999.
[15]
Dowek, G.: Axioms vs. rewrite rules: From completeness to cut elimination, in H. Kirchner and C. Ringeissen (eds.), Frontiers of Combining Systems, Lecture Notes in Artificial Intelligence 1794, Springer-Verlag, 2000, pp. 62-72.
[16]
Dowek, G., Hardin, T. and Kirchner, C.: Theorem proving modulo, Rapport de Recherche 3400, Institut National de Recherche en Informatique et en Automatique, 1998. http://www.inria.fr/rrrt/rr-3400.html.
[17]
Dowek G., Hardin T., and Kirchner C. Higher-order unification via explicit substitutions Inform. and Comput. 2000 157 183-235
[18]
Dowek G., Hardin T., and Kirchner C. HOL-?s, an intentional first-order expression of higher-order logic Math. Structures Comput. Sci. 2001 11 1 21-45
[19]
Dowek, G., Hardin, T. and Kirchner, C.: Theorem proving modulo, revised version, Rapport de Recherche 4861, Institut National de Recherche en Informatique et en Automatique, 2003. http://www.inria.fr/rrrt/rr-4861.html.
[20]
Dowek, G. and Werner, B.: Proof normalization modulo, in Types for Proofs and Programs, Lecture Notes in Comput. Sci. 1657, 1999, pp. 62-77.
[21]
Gallier J. H. Logic for Computer Science: Foundations of Automatic Theorem Proving 1986 New York Harper & Row
[22]
Gallier J., Raatz S., and Snyder W. Aït-Kaci H. and Nivat M. Rigid E-unification and its applications to equational matings Resolution of Equations in Algebraic Structures 1989 New York Academic Press 151-216
[23]
Girard, J.-Y., Lafont, Y. and Taylor, P.: Proofs and Types, Cambridge Tracts Theoret. Comput. Sci. 7, Cambridge University Press, 1989.
[24]
Huet, G.: Constrained resolution: A complete method for type theory, Ph.D. thesis, Case Western Reserve University, 1972.
[25]
Huet, G.: A mechanization of type theory, in Proceeding of the Third International Joint Conference on Artificial Intelligence, 1973, pp. 139-146.
[26]
Huet G. A unification algorithm for typed lambda calculus Theoret. Comput. Sci. 1975 1 1 27-57
[27]
Huet G. Résolution d'equations dans les langages d'ordre 1, 2,...,? 1976 France Université de Paris
[28]
Hullot, J.-M.: Canonical forms and unification, in Proceedings 5th International Conference on Automated Deduction, Les Arcs (France), 1980, pp. 318-334.
[29]
Jaffar, J. and Lassez, J.-L.: Constraint logic programming, in Proceedings of the 14th Annual ACM Symposium on Principles Of Programming Languages, Munich (Germany), 1987, pp. 111-119.
[30]
Jouannaud J.-P. and Kirchner H. Completion of a set of rules modulo a set of equations SIAM J. Comput. 1986 15 4 1155-1194
[31]
Jouannaud J.-P. and Kirchner C. Lassez J.-L. and Plotkin G. Solving equations in abstract algebras: A rule-based survey of unification Computational Logic. Essays in honor of Alan Robinson 1991 Cambridge, MA MIT Press 257-321
[32]
Kirchner, C.: Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories équationnelles, Thèse de Doctorat d'Etat, Université Henri Poincaré - Nancy 1, 1985.
[33]
Kirchner, H.: Orderings in automated theorem proving, in F. Hoffman (ed.), Mathematical Aspects of Artificial Intelligence, Proc. Symposia Appl. Math. 55, Amer. Math. Soc., 1998, pp. 55-95.
[34]
Kirchner C., Kirchner H., and Rusinowitch M. Deduction with symbolic constraints Revue d'Intelligence Artificielle 1990 4 3 9-52 Special issue on Automatic Deduction.
[35]
Kirchner, C. and Ringeissen, C.: Higher-order equational unification via explicit substitutions, in Proceedings 6th International Joint Conference ALP'97-HOA'97, Southampton (UK), Lecture Notes in Comput. Sci. 1298, Springer-Verlag, 1997, pp. 61-75.
[36]
Klop J., van Oostrom V., and van Raamsdonk F. Combinatory reduction systems: Introduction and survey Theoret. Comput. Sci. 1993 121 279-308
[37]
Knuth D. E. and Bendix P. B. Leech J. Simple word problems in universal algebras Computational Problems in Abstract Algebra 1970 Oxford Pergamon Press 263-297
[38]
Kolata, G.: With major math proof, brute computers show flash of reasoning power, New York Times, Tuesday, December 10, 1996.
[39]
Lee S.-J. and Plaisted D. Use of replace rules in theorem proving Methods of Logic in Computer Science 1994 1 2 217-240
[40]
Marché, C.: Normalised rewriting and normalised completion, in S. Abramsky (ed.), Proceedings 9th IEEE Symposium on Logic in Computer Science, Paris, 1994, pp. 394-403.
[41]
McCune W. Solution of the Robbins problem J. Automated Reasoning 1997 19 3 263-276
[42]
Nieuwenhuis, R. and Rubio, A.: AC-superposition with constraints: No AC-unifiers needed, in A. Bundy (ed.), Proceedings 12th International Conference on Automated Deduction, Nancy (France), Lecture Notes in Artificial Intelligence 814, Springer-Verlag, 1994, pp. 545-559.
[43]
Nutt W., Réty P., and Smolka G. Basic narrowing revisited J. Symbolic Comput. 1989 7 3-4 295-318 Special issue on unification. Part one.
[44]
Peterson G. A technique for establishing completeness results in theorem proving with equality SIAM J. Comput. 1983 12 1 82-100
[45]
Peterson G. and Stickel M. E. Complete sets of reductions for some equational theories J. ACM 1981 28 233-264
[46]
Plaisted D. A. and Potter R. C. Term rewriting: Some experimental results J. Symbolic Comput. 1991 11 1-2 149-180
[47]
Plotkin G. Building-in equational theories Machine Intelligence 1972 7 73-90
[48]
Stickel M. Automated deduction by theory resolution J. Automated Reasoning 1985 1 4 285-289
[49]
Stuber, J.: A model-based completeness proof of extended narrowing and resolution, in 1st Int. Joint Conf. on Automated Reasoning (IJCAR-2001), Siena, Italy, Lecture Notes in Comput. Sci. 2083, Springer-Verlag, 2001, pp. 195-210.
[50]
Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.): Term Rewriting Systems, Cambridge University Press, 2002.
[51]
Vigneron, L.: Positive deduction modulo regular theories, in H. K. Büning (ed.), Annual Conference of the European Association for Computer Science Logic, Lecture Notes in Comput. Sci. 1092, Springer-Verlag, 1995, pp. 468-485. Selected papers.
[52]
Viry P. Equational rules for rewriting logic Theoret. Comput. Sci. 2002 285 2 487-517

Cited By

View all

Index Terms

  1. Theorem Proving Modulo
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Automated Reasoning
    Journal of Automated Reasoning  Volume 31, Issue 1
    Sep 2003
    101 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 September 2003

    Author Tags

    1. automated theorem proving
    2. rewriting
    3. resolution
    4. narrowing
    5. higher-order logic
    6. cut elimination
    7. deduction modulo
    8. sequent calculus modulo
    9. Skolemization

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media