Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Resolution is Cut-Free

Published: 01 March 2010 Publication History

Abstract

In this article, we show that the extension of the resolution proof system to deduction modulo is equivalent to the cut-free fragment of the sequent calculus modulo. The result is obtained through a syntactic translation, without using any cut-elimination procedure. Additionally, we show Skolem theorem and inversion/focusing results. Thanks to the expressiveness of deduction modulo, all these results also apply to the cases of higher-order resolution, Peano's arithmetic and Gentzen's LK.

References

[1]
Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414-432 (1971).
[2]
Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297-347 (1992).
[3]
Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4790, pp. 151-165. Springer, New York (2007).
[4]
Bonichon, R., Hermant, O.: A semantic completeness proof for TaMeD. In: Hermann, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4246, pp. 167-181. Springer, New York (2006).
[5]
Bonichon, R., Hermant, O.: On constructive cut admissibility in deduction modulo. In: Altenkirch, T., McBride, C. (eds.) TYPES for Proofs and Programs. Lecture Notes in Computer Science, vol. 4502, pp. 33-47. Springer, New York (2007).
[6]
Burel, G., Kirchner, C.: Cut elimination in deduction modulo by abstract completion. In: Artëmov, S.N., Nerode, A. (eds.) LFCS. Lecture Notes in Computer Science, vol. 4514, pp. 115- 131. Springer, New York (2007).
[7]
Bonichon, R.: TaMeD: a tableau method for deduction modulo. In: Automated Reasoning: Second International Joint Conference, IJCAR 2004, 4-8 July 2004.
[8]
Burel, G.: A first-order representation of pure type systems using superdeduction. In: LICS, pp. 253-263. IEEE Computer Society, Los Alamitos (2008).
[9]
Dowek, G., Hardin, T., Kirchner, C.: Hol-lambda-sigma: an intentional first-order expression of higher-order logic. Math. Struct. Comput. Sci. 11, 1-25 (2001).
[10]
Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason. 31, 33-72 (2003).
[11]
Dowek, G., Miquel, A.: Cut Elimination for Zermelo's Set Theory. Manuscript (2007).
[12]
de Nivelle, H.: Ordering refinments of resolution. Ph.D. thesis, Technische Universiteit Delft (1995).
[13]
de Nivelle, H.: Implementing the Clausal Normal Form Transformation with Proof Generation. University of Liverpool, Liverpool (2003).
[14]
Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 179-272. Elsevier and MIT, New York (2001).
[15]
Dowek, G., Werner, B.: Proof normalization modulo. J. Symb. Log. 68(4), 1289-1316 (2003).
[16]
Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA. Lecture Notes in Computer Science, vol. 3467, pp. 423-437. Springer, New York (2005).
[17]
Dowek, G., Werner, B.: A Constructive Proof of Skolem Theorem for Constructive Logic. Manuscript (2005).
[18]
Fitting, M.: First Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1996).
[19]
Gentzen, G.: Untersuchungen über das logische Schliessen. Math. Z. 39, 176-210, 405-431 (1934).
[20]
Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1-102 (1987).
[21]
Herbelin, H.: Séquents qu'on calcule. Ph.D. thesis, Université Paris VII, Janvier (1995).
[22]
Hermant, O.: Méthodes sémantiques en déduction modulo. Ph.D. thesis, Université Paris 7 - Denis Diderot (2005).
[23]
Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) Typed Lambda-Calculi and Applications. LNCS, vol. 3461, pp. 221-233. Nara, Japan. Springer, New York (2005).
[24]
Hermant, O.: Skolemization in various intuitionistic logics. Arch. Math. Log. (2009, in press).
[25]
Howe, J.M.: Proof search issues in some non-classical logics. Ph.D. thesis, University of St Andrews (1998). Available as University of St Andrews Research Report CS/99/1.
[26]
Kleene, S.C.: Permutability of inferences in Gentzen's calculi LK and LJ. Two papers on the predicate calculus. Mem. Am. Math. Soc. 10, 1-26 (1952).
[27]
Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL. Lecture Notes in Computer Science, vol. 4646, pp. 451-465. Springer, New York (2007).
[28]
Maehara, S.: The predicate calculus with e symbol. J. Math. Soc. Jpn. 7(4), 323-344 (1955).
[29]
Maslov, S.Ju.: An inverse method of establishing deducibilities in the classical predicate calculus. Dokl. Akad. Nauk SSSR 159, 17-20 (1964). Reprinted in Siekmann, Wrightson: Automation of reasoning 1: Classical papers on computational logic 1957-1966 (1983).
[30]
Mints, G.E.: Skolem's method of elimination of positive quantifiers in sequential calculi. Sov. Math. Dokl. 7, 861-864 (1966).
[31]
Mints, G.: Gentzen-type systems and resolution rules, part I: propositional logic. In: Martin-Löf, P., Mints,G. (eds.) Conference on Computer Logic. Lecture Notes in Computer Science, vol. 417, pp. 198-231. Springer, New York (1988).
[32]
Mints, G.: Gentzen-type systems and resolution rule, part II: predicate logic. In: Oikkonen, J., Väänänen, J. (eds.) Proc. of ASL Summer Meeting, Logic Colloquium '90, Helsinki, Finland, 15-22 July 1990. Lecture Notes in Logic, vol. 2, pp. 163-190. Springer, New York (1993).
[33]
Nerode, A., Shore, R.A.: Logic for Applications. Springer, New York (1993).
[34]
Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 335-367. Elsevier and MIT, New York (2001).
[35]
Pfenning, F.: Automated Theorem Proving. Lecture Notes (2004).
[36]
Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23-41 (1965).
[37]
Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT, New York (2001).
[38]
Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Commun. 15(2), 91-110 (2002).
[39]
Skolem, T.: Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Verënderlichen mit unendlichem Ausdehnungsbereich. In: Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, vol. 6 (1923) English translation by van Heijenoort in From Frege to Gödel.
[40]
Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory. Cambridge University Press, Cambridge (1996).
[41]
Stuber, J.: A model-based completeness proof of extended narrowing and resolution. In: First International Joint Conference on Automated Reasoning (IJCAR-2001). LNCS, vol. 2083, pp. 195- 210. Springer, New York (2001).
[42]
Szabo, M.E. (ed.): Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundation of Mathematics. North Holland, Amsterdam (1969).
[43]
Takeuti, G.: Proof Theory, 2nd edn. North Holland, Amsterdam (1987).
[44]
Tammet, T.: Resolution, inverse method and the sequent calculus. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Kurt Gödel Colloquium. Lecture Notes in Computer Science, vol. 1289, pp. 65-83. Springer, New York (1997).
[45]
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction. North-Holland, Amsterdam (1988).

Cited By

View all
  • (2020)Linking Focusing and Resolution with SelectionACM Transactions on Computational Logic10.1145/337327621:3(1-30)Online publication date: 20-Feb-2020
  • (2019)First-Order Automated Reasoning with Theories: When Deduction Modulo Theory Meets PracticeJournal of Automated Reasoning10.1007/s10817-019-09533-z64:6(1001-1050)Online publication date: 23-Sep-2019
  • (2010)I-terms in ordered resolution and superposition calculiProceedings of the 10th ASIC and 9th MKM international conference, and 17th Calculemus conference on Intelligent computer mathematics10.5555/1894483.1894488(19-33)Online publication date: 5-Jul-2010
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Automated Reasoning
Journal of Automated Reasoning  Volume 44, Issue 3
March 2010
125 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 March 2010

Author Tags

  1. Classical sequent calculus
  2. Cut rule
  3. Cut-free
  4. Deduction modulo
  5. ENAR
  6. Resolution
  7. Rewriting
  8. Skolem theorem
  9. Skolemization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Linking Focusing and Resolution with SelectionACM Transactions on Computational Logic10.1145/337327621:3(1-30)Online publication date: 20-Feb-2020
  • (2019)First-Order Automated Reasoning with Theories: When Deduction Modulo Theory Meets PracticeJournal of Automated Reasoning10.1007/s10817-019-09533-z64:6(1001-1050)Online publication date: 23-Sep-2019
  • (2010)I-terms in ordered resolution and superposition calculiProceedings of the 10th ASIC and 9th MKM international conference, and 17th Calculemus conference on Intelligent computer mathematics10.5555/1894483.1894488(19-33)Online publication date: 5-Jul-2010
  • (2010)Embedding deduction modulo into a proverProceedings of the 24th international conference/19th annual conference on Computer science logic10.5555/1887459.1887476(155-169)Online publication date: 23-Aug-2010

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media