Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Read operation performance of large selectorless cross-point array with self-rectifying memristive device

Published: 01 June 2016 Publication History

Abstract

Memristive device based passive crossbar arrays hold a great promise for high-density and non-volatile memories. A significant challenge of ultra-high density integration of these crossbars is unwanted sneak-path currents. The most common way of addressing this issue today is an integrated or external selecting device to block unwanted current paths. In this paper, we use a memristive device with intrinsic rectifying behavior to suppress sneak-path currents in the crossbar. We systematically evaluate the read operation performance of large-scale crossbar arrays with regard to read margin and power consumption for different crossbar sizes, nanowire interconnect resistances, ON and OFF resistances, rectification ratios under different read-schemes. Outcomes of this study allow improved understanding of the trade-off between read margin, power consumption and read-schemes. Most importantly, this study provides a guideline for circuit designers to improve the performance of oxide-based resistive memory (RRAM) based cross-point arrays. Overall, self-rectifying behavior of the memristive device efficiently improves the read operation performance of large-scale selectorless cross-point arrays. HighlightsProvide a Verilog-A behavioral model of a memristive device with intrinsic rectifying behavior based on published measured characteristics of these devices.Evaluate read operation performance under diverse settings.Demonstrate the effectiveness of this special type of memristive device as an alternative to reduce sneak-path currents in the crossbar.Performs a valuable crossbar read operation comparison among memristive device with intrinsic-rectifying behavior, memristive device with linear I-V characteristic and 1S1M structure.

References

[1]
J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing, Nat. Nanotechnol., 8 (2013) 13-24.
[2]
K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, S.-M.S. Kang, Memristor MOS content addressable memory (MCAM), IEEE Trans. Very Large Scale Integr. Syst., 19 (2011) 1407-1417.
[3]
Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Memristive crypto primitive for building highly secure physical unclonable functions, Sci. Rep., 5 (2015) 12785.
[4]
Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Emerging physical unclonable functions with nanotechnology, IEEE Access, 4 (2016) 61-80.
[5]
E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories, Nat. Mater., 9 (2010) 403-406.
[6]
Y. Yang, P. Sheridan, W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices, Appl. Phys. Lett., 100 (2012) 203112.
[7]
O. Kavehei, E. Linn, L. Nielen, S. Tappertzhofen, E. Skafidas, I. Valov, R. Waser, An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing, Nanoscale, 5 (2013) 5119-5128.
[8]
V. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, Punchthrough-diode-based bipolar RRAM selector by Si epitaxy, IEEE Electron. Dev. Lett., 33 (2012) 1396-1398.
[9]
W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha, et al., Varistor-type bidirectional switch (JMAX 10 7 A / cm 2, selectivity 10 4 ) for 3D bipolar resistive memory arrays, In: Proceedings of the IEEE Symposium on VLSI Technology (VLSIT), 2012, pp. 37-38.
[10]
A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Shimakawa, An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput, IEEE J. Solid-State Circuits, 48 (2013) 178-185.
[11]
S.H. Jo, T. Kumar, S. Narayanan, W.D. Lu, H. Nazarian, 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector, In: IEEE International Electron Devices Meeting (IEDM), 2014, pp. 6-7.
[12]
J. Zhou, K.-H. Kim, W. Lu, Crossbar RRAM arrays, IEEE Trans. Electron. Dev., 61 (2014) 1369-1376.
[13]
J. Liang, H.P. Wong, Cross-point memory array without cell selectors-device characteristics and data storage pattern dependencies, IEEE Trans. Electron. Dev., 57 (2010) 2531-2538.
[14]
A. Chen, Accessibility of nano-crossbar arrays of resistive switching devices, In: Proceedings of 11th IEEE Conference on Nanotechnology (IEEE-NANO), Portland, OR, 2011, pp. 15-18.
[15]
Y. Cassuto, S. Kvatinsky, E. Yaakobi, Sneak-path constraints in memristor crossbar arrays, In: IEEE International Symposium on Information Theory Proceedings (ISIT), 2013, pp. 156-160.
[16]
J.J. Yang, M.-X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W.-D. Li, W. Yi, D.A. Ohlberg, B.J. Choi, W. Wu, Engineering nonlinearity into memristors for passive crossbar applications, Appl. Phys. Lett., 100 (2012) 113501.
[17]
K.-H. Kim, S.H. Jo, S. Gaba, W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance, Appl. Phys. Lett., 96 (2010) 053106.
[18]
K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications, Nano Lett., 12 (2011) 389-395.
[19]
W. Lu, K.-H. Kim, T. Chang, S. Gaba, Two-terminal resistive switches (memristors) for memory and logic applications, In: 16th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2011, pp. 217-223.
[20]
X.A. Tran, W. Zhu, W. Liu, Y. Yeo, B. Nguyen, H.Y. Yu, A self-rectifying bipolar RRAM with sub-50-set/reset current for cross-bar architecture, IEEE Electron. Dev. Lett., 33 (2012) 1402-1404.
[21]
W. Lu, S.H. Jo, Non-volatile solid state resistive switching devices, US Patent App. 11/875,541 (Oct. 19 2007).
[22]
C.-T. Chou, B. Hudec, C.-W. Hsu, W.-L. Lai, C.-C. Chang, T.-H. Hou, Crossbar array of selector-less TaOx/TiO2 bilayer RRAM, Microelectronics Reliability, 55 (2015) 2220-2223.
[23]
O. Kavehei, S. Al-Sarawi, K.-R. Cho, K. Eshraghian, D. Abbott, An analytical approach for memristive nanoarchitectures, IEEE Trans. Nanotechnol., 11 (2012) 374-385.
[24]
S. Kim, H.-D. Kim, S.-J. Choi, Numerical study of read scheme in one-selector one-resistor crossbar array, Solid-State Electron., 114 (2015) 80-86.
[25]
E. Lehtonen, J. Tissari, J. Poikonen, M. Laiho, L. Koskinen, A cellular computing architecture for parallel memristive stateful logic, Microelectron. J., 45 (2014) 1438-1449.
[26]
Z. Jiang, S. Yu, Y. Wu, J.H. Engel, X. Guan, H.-S.P. Wong, Verilog-A compact model for oxide-based resistive random access memory (RRAM), In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), IEEE, 2014, pp. 41-44.
[27]
Z. Jiang, P. Huang, L. Zhao, S. Kvatinsky, S. Yu, X. Liu, J. Kang, Y. Nishi, H.-S.P. Wong, Performance prediction of large-scale 1S1R resistive memory array using machine learning, In: IEEE International Memory Workshop (IMW), 2015, http://dx.doi.org/10.1109/IMW.2015.7150302.

Cited By

View all
  • (2019)Cross-point Resistive MemoryACM Transactions on Design Automation of Electronic Systems10.1145/332506724:4(1-37)Online publication date: 20-Jun-2019
  • (2018)Aliens: A Novel Hybrid Architecture for Resistive Random-Access Memory2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)10.1145/3240765.3240776(1-8)Online publication date: 5-Nov-2018
  1. Read operation performance of large selectorless cross-point array with self-rectifying memristive device

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Integration, the VLSI Journal
    Integration, the VLSI Journal  Volume 54, Issue C
    June 2016
    118 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 June 2016

    Author Tags

    1. Crossbar array memory
    2. Memristive device
    3. Memristor
    4. Power consumption
    5. RRAM
    6. Read margin
    7. Sneak-path currents
    8. Verilog-A

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Cross-point Resistive MemoryACM Transactions on Design Automation of Electronic Systems10.1145/332506724:4(1-37)Online publication date: 20-Jun-2019
    • (2018)Aliens: A Novel Hybrid Architecture for Resistive Random-Access Memory2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)10.1145/3240765.3240776(1-8)Online publication date: 5-Nov-2018

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media