Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

When privacy fails, a formula describes an attack: : A complete and compositional verification method for the applied π-calculus

Published: 30 May 2023 Publication History

Abstract

We prove that three semantics for the applied π-calculus coincide – a testing semantics, a labelled equivalence, and a modal logic – and explain how design decisions in each of these semantics are objectively supported by this convergence. Each of these semantics has a distinct role when verifying security protocols. Testing semantics are suited to security and privacy problems expressed in terms of a process equivalence problem, where tests define the space of attack strategies. A labelled equivalence is suited to proving the given equivalence problem when such security and privacy properties hold; while, dually, the modal logic describes attacks when such security or privacy properties are violated. For this particular investigation into this good-practice design pattern, we select what is perhaps the most powerful (interleaving) testing semantics: open barbed bisimilarity. Selecting open barbed bisimilarity comes with the bonus that it is a congruence hence is suited to compositional reasoning. This reference testing semantics leads to a notion of quasi-open bisimilarity and an intuitionistic modal logic for the applied π-calculus. We argue that, since we characterise the finest (interleaving) testing semantics and tests are attack strategies, our intuitionistic modal logic can describe all attacks whenever a privacy property expressed as an equivalence problem fails.

Highlights

Postulates that a powerful testing equivalence (open barbed bisimilarity) is suited to modelling attacker capabilities in privacy problems.
Proves that quasi-open bisimilarity, better suited to giving proofs of privacy properties, is sound and complete with respect to such tests.
Provides a Hennessy-Milner duality showing that an intuitionistic modal logic characterises the equivalences developed.
Consequently, the logic is capable of describing all attacks on privacy properties expressed as an equivalence problem.
Equivalences proposed are congruences, hence support a compositional methodology which has been applied to private ePayment protocols.

References

[1]
S. Delaune, Analysing privacy-type properties in cryptographic protocols, in: H. Kirchner (Ed.), 3rd International Conference on Formal Structures for Computation and Deduction (FSCD'18), in: LIPIcs, vol. 108, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2018, pp. 1:1–1:21,.
[2]
M. Arapinis, T. Chothia, E. Ritter, M. Ryan, Analysing unlinkability and anonymity using the applied pi calculus, in: 23rd IEEE Computer Security Foundations Symposium (CSF'10), 2010, pp. 107–121,.
[3]
R. Horne, S. Mauw, Discovering ePassport vulnerabilities using bisimilarity, Log. Methods Comput. Sci. 17 (2021) 24:1–24:52,.
[4]
S. Kremer, M. Ryan, Analysis of an electronic voting protocol in the applied pi calculus, in: M. Sagiv (Ed.), Programming Languages and Systems: 14th European Symposium on Programming (ESOP'05 at ETAPS'05), in: LNCS, vol. 3444, Springer-Verlag, 2005, pp. 186–200,.
[5]
V. Cortier, B. Smyth, Attacking and fixing Helios: an analysis of ballot secrecy, in: 24th IEEE Computer Security Foundations Symposium (CSF'11), 2011, pp. 297–311,.
[6]
M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1985) 137–161,.
[7]
R. Milner, J. Parrow, D. Walker, Modal logics for mobile processes, Theor. Comput. Sci. 114 (1993) 149–171,.
[8]
R. Horne, K.Y. Ahn, S.-w. Lin, A. Tiu, Quasi-open bisimilarity with mismatch is intuitionistic, in: A. Dawar, E. Grädel (Eds.), 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'18), 2018, pp. 26–35,.
[9]
K.Y. Ahn, R. Horne, A. Tiu, A characterisation of open bisimilarity using an intuitionistic modal logic, Log. Methods Comput. Sci. 17 (2021) 2:1–2:40,.
[10]
J. Parrow, J. Borgström, L. Eriksson, R. Gutkovas, T. Weber, Modal logics for nominal transition systems, Log. Methods Comput. Sci. 17 (2021) 6:1–6:49,.
[11]
R.J. van Glabbeek, The linear time-branching time spectrum I. The semantics of concrete, sequential processes, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier, 2001, pp. 3–99,.
[12]
A. Simpson, Sequent calculi for process verification: Hennessy–Milner logic for an arbitrary GSOS, J. Log. Algebraic Program. 60–61 (2004) 287–322,.
[13]
R. De Nicola, F. Vaandrager, Three logics for branching bisimulation, J. ACM 42 (1995) 458–487,.
[14]
E.-E. Doberkat, Stochastic relations: congruences, bisimulations and the Hennessy-Milner theorem, SIAM J. Comput. 35 (2005) 590–626,.
[15]
P. Baldan, S. Crafa, A logic for true concurrency, J. ACM 61 (2014) 24:1–24:36,.
[16]
J. Desharnais, P. Panangaden, Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes, J. Log. Algebraic Program. 56 (2003) 99–115,.
[17]
M. Boreale, R.D. Nicola, R. Pugliese, Proof techniques for cryptographic processes, SIAM J. Comput. 31 (2001) 947–986,.
[18]
M. Abadi, B. Blanchet, C. Fournet, The applied pi calculus: mobile values, new names, and secure communication, J. ACM 65 (2017) 1–41,.
[19]
C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[20]
R.J. van Glabbeek, The linear time - branching time spectrum II, in: 4th International Conference on Concurrency Theory (CONCUR'93), in: LNCS, vol. 715, Springer, 1993, pp. 66–81,.
[21]
E. McCallister, T. Grance, K. Scarfone, Guide to Protecting the Confidentiality of Personally Identifiable Information (PII), Special Publication 800-122 National Institute of Standards and Technology, Gaithersburg, MD, 2010, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904990.
[22]
M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in: 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'01), 2001, pp. 104–115,.
[23]
R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Part I and II, Inf. Comput. 100 (1992) 1–100,.
[24]
I. Filimonov, R. Horne, S. Mauw, Z. Smith, Breaking unlinkability of the ICAO 9303 standard for e-passports using bisimilarity, in: K. Sako, S. Schneider, P.Y.A. Ryan (Eds.), 24th European Symposium on Research in Computer Security (ESORICS'19), in: LNCS, vol. 11735, Springer, Luxembourg, 2019, pp. 577–594,.
[25]
R. Horne, S. Mauw, S. Yurkov, Compositional analysis of protocol equivalence in the applied π-calculus using quasi-open bisimilarity, in: A. Cerone, P.C. Ölveczky (Eds.), 18th International Colloquium on Theoretical Aspects of Computing (ICTAC'21), in: LNCS, vol. 12819, Springer, 2021, pp. 235–255,.
[26]
Horne, R. (2018): A bisimilarity congruence for the applied pi-calculus sufficiently coarse to verify privacy properties. arXiv:1811.02536 pp. 1–31 : A bisimilarity congruence for the applied pi-calculus sufficiently coarse to verify privacy properties. https://arxiv.org/abs/1811.02536.
[27]
D. Sangiorgi, On the bisimulation proof method, Math. Struct. Comput. Sci. 8 (1998) 447–479,.
[28]
D. Sangiorgi, D. Walker, π-Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[29]
M. Abadi, V. Cortier, Deciding knowledge in security protocols under equational theories, Theor. Comput. Sci. 367 (2006) 2–32,.
[30]
S. Bursuc, H. Comon-Lundh, S. Delaune, Deducibility constraints and blind signatures, Inf. Comput. 238 (2014) 106–127,.
[31]
M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho, Intruder deduction problem for locally stable theories with normal forms and inverses, Theor. Comput. Sci. 672 (2017) 64–100,.
[32]
M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Levy, Explicit substitutions, in: 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'90), 1989, pp. 31–46,.
[33]
B. Accattoli, B. Barras, Environments and the complexity of abstract machines, in: Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming, PPDP '17, Association for Computing Machinery, New York, NY, USA, 2017, pp. 4–16,.
[34]
M.J. Gabbay, A.M. Pitts, A new approach to abstract syntax with variable binding, Form. Asp. Comput. 13 (2001) 341–363,.
[35]
A. Gacek, D. Miller, G. Nadathur, Combining generic judgments with recursive definitions, in: F. Pfenning (Ed.), 23rd IEEE Symposium on Logic in Computer Science (LICS'08), IEEE Computer Society Press, 2008, pp. 33–44,.
[36]
D. Miller, A. Tiu, A proof theory for generic judgments, ACM Trans. Comput. Log. 6 (2005) 749–783,.
[37]
V. Khomenko, R. Meyer, Checking pi-calculus structural congruence is graph isomorphism complete, in: Ninth International Conference on Application of Concurrency to System Design (ACSD'09), IEEE, 2009, pp. 70–79,.
[38]
L. Babai, Canonical form for graphs in quasipolynomial time: preliminary report, in: 51st ACM SIGACT Symposium on Theory of Computing (STOC'19), ACM, 2019, pp. 1237–1246,.
[39]
Abadi, M.; Blanchet, B.; Fournet, C. (2017): The applied pi calculus: mobile values, new names, and secure communication. arXiv:1609.03003v2 pp. 1–104 : The applied pi calculus: mobile values, new names, and secure communication. https://arxiv.org/pdf/1609.03003v2.pdf.
[40]
C. Aubert, R. Horne, C. Johansen, Diamonds for security: a non-interleaving operational semantics for the applied pi-calculus, in: B. Klin, S. Lasota, A. Muscholl (Eds.), 33rd International Conference on Concurrency Theory (CONCUR 2022), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 243, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 30:1–30:26,.
[41]
D. Sangiorgi, D. Walker, On barbed equivalences in π-calculus, in: K.G. Larsen, M. Nielsen (Eds.), 12th International Conference on Concurrency Theory (CONCUR'01), in: LNCS, vol. 2154, Springer, 2001, pp. 292–304,.
[42]
D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1, in: H. Krawczyk (Ed.), Advances in Cryptology — 18th Annual International Cryptology Conference (CRYPTO'98), in: LNCS, vol. 1462, Springer, 1998, pp. 1–12,.
[43]
R. Horne, S. Mauw, S. Yurkov, Unlinkability of an improved key agreement protocol for EMV 2nd gen payments, in: 35th IEEE Computer Security Foundations Symposium, CSF 2022, Haifa, Israel, August 7-10, 2022, IEEE, 2022, pp. 364–379,.
[44]
G.D. Plotkin, C. Stirling, A framework for intuitionistic modal logics, in: J.Y. Halpern (Ed.), 1st Conference on Theoretical Aspects of Reasoning About Knowledge (TARK'86), Morgan Kaufmann, 1986, pp. 399–406,.
[45]
B. Blanchet, Automatic proof of strong secrecy for security protocols, in: IEEE Symposium on Security and Privacy (S&P'04), IEEE, 2004, pp. 86–100,.
[46]
B. Blanchet, M. Abadi, C. Fournet, Automated verification of selected equivalences for security protocols, J. Log. Algebraic Program. 75 (2008) 3–51,.
[47]
R. Milner, The polyadic π-calculus: a tutorial, in: F.L. Bauer, W. Brauer, H. Schwichtenberg (Eds.), Logic and Algebra of Specification, in: NATO ASI Series, vol. 94, 1993, pp. 203–246,.
[48]
B. Blanchet, Modeling and verifying security protocols with the applied pi calculus and proverif, Found. Trends Priv. Secur. 1 (2016) 1–135,.
[49]
V. Cheval, S. Kremer, I. Rakotonirina, DEEPSEC: deciding equivalence properties in security protocols theory and practice, in: 2018 IEEE Symposium on Security and Privacy, IEEE Computer Society, 2018, pp. 529–546,.
[50]
R. Chadha, V. Cheval, Ş. Ciobâcă, S. Kremer, Automated verification of equivalence properties of cryptographic protocols, ACM Trans. Comput. Log. 17 (2016) 23:1–23:32,.
[51]
S. Kremer, R. Künnemann, Automated analysis of security protocols with global state, J. Comput. Secur. 24 (2016) 583–616,.
[52]
V. Cortier, A. Dallon, S. Delaune, SAT-Equiv: an efficient tool for equivalence properties, in: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 2017, pp. 481–494,.
[53]
A. Tiu, N. Nguyen, R. Horne, SPEC: an equivalence checker for security protocols, in: A. Igarashi (Ed.), 14th Asian Symposium on Programming Languages and Systems (APLAS'16), in: LNCS, vol. 10017, Springer, 2016, pp. 87–95,.
[54]
C. Ford, S. Milius, L. Schröder, Behavioural preorders via graded monads, in: 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'21), IEEE, 2021, pp. 1–13,.
[55]
D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, Y. Wang Abella, A system for reasoning about relational specifications, J. Formaliz. Reason. 7 (2014) 1–89,.
[56]
A.K. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis University of Edinburgh, 1994.
[57]
S.A. Kripke, Semantical analysis of intuitionistic logic I, in: J.N. Crossley, M. Dummett (Eds.), Formal Systems and Recursive Functions, North-Holland, Amsterdam, 1965, pp. 92–130,.
[58]
N. Alechina, M. Mendler, V. de Paiva, E. Ritter, Categorical and Kripke semantics for constructive S4 modal logic, in: L. Fribourg (Ed.), 15th International Workshop on Computer Science Logic (CSL'01), in: LNCS, vol. 2142, Springer, 2001, pp. 292–307,.
[59]
G. Plotkin, Building-in equational theories, Mach. Intell. 7 (1972) 73–90.
[60]
M.E. Stickel, A unification algorithm for associative-commutative functions, J. ACM 28 (1981) 423–434,.
[61]
F. Fages, Associative-commutative unification, J. Symb. Comput. 3 (1987) 257–275,.
[62]
H. Geuvers, B. Jacobs, Relating apartness and bisimulation, Log. Methods Comput. Sci. 17 (3) (2021),.
[63]
J. de Groot, D. Pattinson, Hennessy-Milner properties via topological compactness, Inf. Comput. (2021),.
[64]
R. van Glabbeek, Failure trace semantics for a process algebra with time-outs, Log. Methods Comput. Sci. 17 (2021) https://lmcs.episciences.org/7398.
[65]
Q. Heath, D. Miller, A proof theory for model checking, J. Autom. Reason. 63 (2019) 857–885,.
[66]
S. Briais, U. Nestmann, Open bisimulation, revisited, Theor. Comput. Sci. 386 (2007) 236–271,.
[67]
A. Tiu, A trace based bisimulation for the spi calculus: an extended abstract, in: 5th Asian Conference on Programming Languages and Systems (APLAS'07), in: LNCS, vol. 4807, Springer, 2007, pp. 367–382,.
[68]
D. Chaum, Blind signatures for untraceable payments, in: D. Chaum, R.L. Rivest, A.T. Sherman (Eds.), Advances in Cryptology: Proceedings of CRYPTO'82, Plenum Press, New York, 1983, pp. 199–203,.
[69]
D. Sangiorgi, A theory of bisimulation for the π-calculus, Acta Inform. 33 (1996) 69–97,.
[70]
A. Tiu, J. Dawson, Automating open bisimulation checking for the spi calculus, in: 2010 23rd IEEE Computer Security Foundations Symposium, IEEE, 2010, pp. 307–321,.
[71]
M. Abadi, C. Fournet, Private authentication, Theor. Comput. Sci. 322 (2004) 427–476,.
[72]
V. Cheval, H. Comon-Lundh, S. Delaune, A procedure for deciding symbolic equivalence between sets of constraint systems, Inf. Comput. 255 (2017) 94–125,.
[73]
K.Y. Ahn, R. Horne, A. Tiu, A characterisation of open bisimilarity using an intuitionistic modal logic, in: R. Meyer, U. Nestmann (Eds.), 28th International Conference on Concurrency Theory (CONCUR'17), in: LIPIcs, vol. 85, 2017, pp. 7:1–7:17,.
[74]
J.J. Leifer, R. Milner, Deriving bisimulation congruences for reactive systems, in: C. Palamidessi (Ed.), 31st International Conference on Concurrency Theory (CONCUR'00), in: LNCS, vol. 1877, Springer, 2000, pp. 243–258,.
[75]
R. Milner, D. Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), 19th International Colloquium on Automata, Languages and Programming (ICALP'92), in: LNCS, vol. 623, Springer, 1992, pp. 685–695,.
[76]
P. Sewell, From rewrite rules to bisimulation congruences, Theor. Comput. Sci. 274 (2002) 183–230,.
[77]
C. Aubert, D. Varacca, Processes against tests: on defining contextual equivalences, J. Log. Algebraic Methods Program. 129 (2022),.
[78]
F. Bonchi, B. König, U. Montanari, Saturated semantics for reactive systems, in: 21st IEEE Symposium on Logic in Computer Science (LICS'06), IEEE Computer Society, 2006, pp. 69–80,.
[79]
U. Montanari, V. Sassone, Dynamic congruence vs. progressing bisimulation for CCS, Fundam. Inform. 16 (1992) 171–199,.
[80]
F. Bonchi, F. Gadducci, G.V. Monreale, A general theory of barbs, contexts, and labels, ACM Trans. Comput. Log. 15 (2014) 35:1–35:27,.
[81]
R.J. van Glabbeek, U. Goltz, Refinement of actions and equivalence notions for concurrent systems, Acta Inform. 37 (2001) 229–327,.
[82]
C. Aubert, R. Horne, C. Johansen, Bisimulations respecting duration and causality for the non-interleaving applied π-calculus, EPTC 368 (2022) 3–22,.
[83]
M. Abadi, A.D. Gordon, A bisimulation method for cryptographic protocols, Nord. J. Comput. 5 (1998) 267–303.
[84]
J. Borgström, U. Nestmann, On bisimulations for the spi calculus, Math. Struct. Comput. Sci. 15 (2005) 487–552,.
[85]
J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: a framework for mobile processes with nominal data and logic, Log. Methods Comput. Sci. 7 (2011),.
[86]
J. Borgström, A complete symbolic bisimilarity for an extended spi calculus, Electron. Notes Theor. Comput. Sci. 242 (2009) 3–20,.
[87]
J. Liu, H. Lin, A complete symbolic bisimulation for full applied pi calculus, Theor. Comput. Sci. 458 (2012) 76–112,.
[88]
M. Johansson, J. Bengtson, B. Victor, J. Parrow, Weak equivalences in psi-calculi, in: 25th Annual IEEE Symposium on Logic in Computer Science (LICS'10), 2010, pp. 322–331,.
[89]
M. Johansson, B. Victor, J. Parrow, Computing strong and weak bisimulations for psi-calculi, J. Log. Algebraic Program. 81 (2012) 162–180,.
[90]
J. Borgström, S. Briais, U. Nestmann, Symbolic bisimulation in the spi calculus, in: P. Gardner, N. Yoshida (Eds.), 15th International Conference on Concurrency Theory (CONCUR'04), in: LNCS, vol. 3170, Springer, 2004, pp. 161–176,.
[91]
S. Delaune, S. Kremer, M.D. Ryan, Symbolic bisimulation for the applied pi calculus, J. Comput. Secur. 18 (2010) 317–377,.
[92]
B. Bisping, D.N. Jansen, U. Nestmann, Deciding all behavioral equivalences at once: a game for linear-time-branching-time spectroscopy, Log. Methods Comput. Sci. 18 (2022),.

Cited By

View all
  • (2023)Provably Unlinkable Smart Card-based PaymentsProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623109(1392-1406)Online publication date: 15-Nov-2023

Index Terms

  1. When privacy fails, a formula describes an attack: A complete and compositional verification method for the applied π-calculus
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Theoretical Computer Science
      Theoretical Computer Science  Volume 959, Issue C
      May 2023
      137 pages

      Publisher

      Elsevier Science Publishers Ltd.

      United Kingdom

      Publication History

      Published: 30 May 2023

      Author Tags

      1. Cryptographic calculi
      2. Bisimilarity
      3. Security
      4. Privacy
      5. Intuitionistic modal logic
      6. Compositionality

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 16 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Provably Unlinkable Smart Card-based PaymentsProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623109(1392-1406)Online publication date: 15-Nov-2023

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media