Nothing Special   »   [go: up one dir, main page]

Skip to main content

Categorical and Kripke Semantics for Constructive S4 Modal Logic

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2142))

Included in the following conference series:

Abstract

We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency, etc. Both systems have so far been studied mainly from type-theoretic and category-theoretic perspectives, but Kripke models for similar systems were studied independently. Here we bring these threads together and prove duality results which show how to relate Kripke models to algebraic models and these in turn to the appropriate categorical models for these logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Benton, G. Bierman, and V. dePaiva. Computational types from a logical perspective. Journal of Functional Programming, 8(2), 1998.

    Google Scholar 

  2. G. M. Bierman and V. de Paiva. Intuitionistic necessity revisited. Technical Report CSR-96-10, University of Birmingham, School of Computer Science, June 1996.

    Google Scholar 

  3. J. Benthem, van. Modal logic and classical logic. Bibliopolis, Naples, 1983.

    Google Scholar 

  4. Z. Benaissa, E. Moggi, W. Taha, and T. Sheard. Logical modalities and multi-stage programming. In Workshop on Intuitionistic Modal Logics and Application (IMLA’99), Satellite to FLoC’99, Trento, Italy, 6th July 1999. Proceedings available from http://www.dcs.shef.ac.uk/~floc99im .

  5. H. B. Curry. A Theory of Formal Deducibility, volume 6 of Notre Dame Mathematical Lectures Notre Dame, Indiana, second edition, 1957.

    Google Scholar 

  6. R. Davies and F. Pfenning. A modal analysis of staged computation. In Guy Steele, Jr., editor, Proc. of 23rd POPL, pages 258–270. ACM Press, 1996.

    Google Scholar 

  7. J. Despeyroux, F. Pfenning, and C. Schürmann. Primitive recursion for higher-order abstract syntax. In P. de Groote and J. Roger Hindley, editors, Proc. of TLCA’97, pages 147–163. LNCS 242, Springer Verlag, 1997.

    Google Scholar 

  8. M. Dummett. Elements of Intuitionism Clarendon Press, Oxford, 1977.

    MATH  Google Scholar 

  9. W. B. Ewald. Intuitionistic tense and modal logic. Journal of Symbolic Logic, 51, 1986.

    Google Scholar 

  10. K. Fine. An incomplete logic containing S4. Theoria, 39:31–42, 1974.

    MATH  MathSciNet  Google Scholar 

  11. M. Fairtlough and M. Mendler. Propositional lax logic. Information and Computation, 137, 1997.

    Google Scholar 

  12. M. Fairtlough, M. Mendler, and M. Walton. First-order lax logic as a framework for constraint logic programming. Technical Report MIP-9714, University of Passau, July 1997. Postscript available through http://www.dcs.shef.ac.uk/~michael .

  13. G. Fischer-Servi. Semantics for a class of intuitionistic modal calculi. In M. L. Dalla Chiara, editor, Italian Studies in the Philosophy of Science, pages 59–72. Reidel, 1980.

    Google Scholar 

  14. Neil Ghani, Valeria de Paiva, and Eike Ritter. Explicit Substitutions for Constructive Necessity. In Proceedings ICALP’98, 1998.

    Google Scholar 

  15. J. Goubault-Larrecq. Logical foundations of eval/quote mechanisms, and the modal logic S4. Manuscript, 1996.

    Google Scholar 

  16. R. Goldblatt. Metamathematics of modal logic. Reports on Mathematical Logic, 6,7:31–42, 21–52, 1976.

    Google Scholar 

  17. R. Goldblatt. Grothendieck Topology as Geometric Modality. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:495–529, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Goldblatt. Mathematics of Modality. CSLI Lecture Notes No. 43. Center for the Study of Language and Information, Stanford University, 1993.

    Google Scholar 

  19. B. P. Hilken. Duality for intuitionistic modal algebras. Journal of Pure and Applied Algebra, 148:171–189, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

    Google Scholar 

  21. S. Kobayashi. Monad as modality. Theoretical Computer Science, 175:29–74, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Lambek and Ph. J. Scott. Introduction to Higher-Order Categorical Logic. Cambridge University Press, 1985.

    Google Scholar 

  23. D. S. Macnab. Modal operators on Heyting algebras. Algebra Universalis, 12:5–29, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Mendler. A Modal Logic for Handling Behavioural Constraints in Formal Hardware Verification. PhD thesis, Department of Computer Science, University of Edinburgh, ECS-LFCS-93-255, March 1993.

    Google Scholar 

  25. M. Mendler. Characterising combinational timing analyses in intuitionistic modal logic. The Logic Journal of the IGPL, 8(6):821–852, November 2000.

    Google Scholar 

  26. E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, July 1991.

    Google Scholar 

  27. F. Pfenning and R. Davies. A judgemental reconstruction of modal logic. Mathematical Structures in Computer Science, 2001.

    Google Scholar 

  28. D. Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqvist and Wiksell, 1965.

    Google Scholar 

  29. G. Plotkin and C. Stirling. A framework for intuitionistic modal logics. In Theoretical aspects of reasoning about knowledge, Monterey, 1986.

    Google Scholar 

  30. A.K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh, 1994.

    Google Scholar 

  31. S.K. Thomason. An incompleteness theorem in modal logic. Theoria, 40:30–34, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. S. Troelstra and D. vanDalen. Constructivism in Mathematics, volume II. North-Holland, 1988.

    Google Scholar 

  33. D. Wijesekera. Constructive modal logic I. Annals of Pure and Applied Logic, 50:271–301, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Wolter and M. Zakharyaschev. Intuitionistic Modal Logics. In Logic in Florence, 1995.

    Google Scholar 

  35. F. Wolter and M. Zakharyaschev. Intuitionistic modal logics as fragments of classical bimodal logics. In E. Orlowska, editor, Logic at Work. Kluwer, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alechina, N., Mendler, M., de Paiva, V., Ritter, E. (2001). Categorical and Kripke Semantics for Constructive S4 Modal Logic. In: Fribourg, L. (eds) Computer Science Logic. CSL 2001. Lecture Notes in Computer Science, vol 2142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44802-0_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44802-0_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42554-0

  • Online ISBN: 978-3-540-44802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics