Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Online motion accuracy compensation of industrial servomechanisms using machine learning approaches

Published: 21 November 2024 Publication History

Abstract

This paper addresses the crucial aspect of position error modeling and compensation in industrial servomechanisms with the aim to achieve accurate control and high-performance operation in industrial robots and automated production systems. The inherent complexity and nonlinear behavior of these modules, usually consisting of a servomotor and a speed reducer, often challenge traditional analytical modeling approaches. In response, the study extensively explores the design and implementation of Machine Learning (ML) algorithms to obtain a comprehensive model of the Transmission Error (TE) in rotating vector reducers, which is a main source of robot motion accuracy errors. The ML models are trained with experimental data obtained from a special purpose test rig, where the reducer is tested under different combinations of input speed, applied load and oil temperature. In the second part of the work, the resulting predictive model, tailored to capture the intricate dynamics of the analyzed reducer, is imported into a programmable logic controller to enable online compensation strategies during the execution of custom motion profiles. Experimental tests are conducted using two distinct motion profiles: one generated with a cycloidal law, typical of industrial machinery, and the other extrapolated from the joints of an industrial robot during a pick-and-place task. The results demonstrate the effectiveness of the proposed approach, enabling accurate prediction and substantial reductions (over 90%) in the overall reducer TE through the implemented predictive model.

Highlights

A method to predict the position errors of industrial servomechanisms is reported.
Machine learning is used to model the transmission errors with experimental data.
Comparisons of various machine learning algorithms for error modeling are provided.
Experiments are conducted on a test rig to retrieve data from industrial equipment.
Models are embedded in a controller to compensate custom motion profiles.

References

[1]
Oliva E., Berselli G., Pellicciari M., Andrisano A.O., An engineering method for the power flow assessment in servo-actuated automated machinery: Mechatronic modeling and experimental evaluation, Robot. Comput.-Integr. Manuf. 38 (2016) 31–41.
[2]
Pham A.-D., Ahn H.-J., High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective, Int. J. Precis. Eng. Manuf.-Green Technol. 5 (2018) 519–533.
[3]
Pham A.-D., Ahn H.-J., Rigid precision reducers for machining industrial robots, Int. J. Precis. Eng. Manuf. 22 (8) (2021) 1469–1486.
[4]
Qiu Z., Xue J., Review of performance testing of high precision reducers for industrial robots, Measurement 183 (2021).
[5]
Yeh S.-S., Su H.-C., Development of friction identification methods for feed drives of CNC machine tools, Int. J. Adv. Manuf. Technol. 52 (2011) 263–278.
[6]
Hace A., Jezernik K., Terbuc M., VSS motion control for a laser-cutting machine, Control Eng. Pract. 9 (1) (2001) 67–77.
[7]
Borase R.P., Maghade D., Sondkar S., Pawar S., A review of PID control, tuning methods and applications, Int. J. Dyn. Control 9 (2021) 818–827.
[8]
Fareh R., Khadraoui S., Abdallah M.Y., Baziyad M., Bettayeb M., Active disturbance rejection control for robotic systems: A review, Mechatronics 80 (2021).
[9]
Giberti H., Cinquemani S., Legnani G., Effects of transmission mechanical characteristics on the choice of a motor-reducer, Mechatronics 20 (5) (2010) 604–610.
[10]
Bilancia P., Monari L., Raffaeli R., Peruzzini M., Pellicciari M., Accurate transmission performance evaluation of servo-mechanisms for robots, Robot. Comput.-Integr. Manuf. 78 (2022).
[11]
Xu L.X., Zhong J.L., Li Y., Chang L., Design and dynamic transmission error analysis of a new type of cycloidal-pin reducer with a rotatable output-pin mechanism, Mech. Mach. Theory 181 (2023).
[12]
Slamani M., Bonev I.A., Characterization and experimental evaluation of gear transmission errors in an industrial robot, Ind. Robot 40 (2013) 441–449.
[13]
Wu K.-Y., Shih Y.-P., Lee J.-J., Kinematic error analysis of the rotor vector gear reducer with machining tolerances, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 1–16.
[14]
Lin K.-S., Chan K.-Y., Lee J.-J., Kinematic error analysis and tolerance allocation of cycloidal gear reducers, Mech. Mach. Theory 124 (2018) 73–91,. URL: https://www.sciencedirect.com/science/article/pii/S0094114X17312338.
[15]
Nabtesco K.-S., Precision gearboxes - component sets, 2024, URL: https://www.nabtesco.de/en/products/precision-gearboxes-component-sets.
[16]
Technologies S.D., Zero backlash precision gearboxes, 2024, URL: https://us.sumitomodrive.com/en-us/motion-control/zero-backlash-precision-gearboxes.
[17]
García P.L., Crispel S., Saerens E., Verstraten T., Lefeber D., Compact gearboxes for modern robotics: A review, Front. Robot. AI 7 (2020) 103.
[18]
Zhang R., Zhou J., Wei Z., Study on transmission error and torsional stiffness of RV reducer under wear, J. Mech. Sci. Technol. 36 (8) (2022) 4067–4081.
[19]
Yang Y., Zhou G., Chang L., Chen G., A modelling approach for kinematic equivalent mechanism and rotational transmission error of RV reducer, Mech. Mach. Theory 163 (2021).
[20]
Xu H., Shi Z., Yu B., Wang H., Dynamic measurement of the lost motion of precision reducers in robots and the determination of optimal measurement speed, J. Adv. Mech. Des. Syst. Manuf. 13 (3) (2019).
[21]
Wang H., Shi Z.-Y., Yu B., Xu H., Transmission performance analysis of RV reducers influenced by profile modification and load, Appl. Sci. 9 (19) (2019) 4099.
[22]
Chen L., Hu H., Zhang Z., Wang X., Application of nonlinear output frequency response functions and deep learning to RV reducer fault diagnosis, IEEE Trans. Instrum. Meas. 70 (2020) 1–14.
[23]
Peng P., Wang J., NOSCNN: A robust method for fault diagnosis of RV reducer, Measurement 138 (2019) 652–658.
[24]
Cavazzuti M., Optimization Methods: from Theory to Design Scientific and Technological Aspects in Mechanics, Springer Science & Business Media, 2012.
[25]
Costa M.A., Wullt B., Norrlöf M., Gunnarsson S., Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting, Measurement 146 (2019) 425–436.
[26]
Espinoza Sepúlveda N.F., Sinha J.K., Blind application of developed smart vibration-based machine learning (SVML) model for machine faults diagnosis to different machine conditions, J. Vib. Eng. Technol. 9 (4) (2021) 587–596.
[27]
Dev P., Jain S., Kumar Arora P., Kumar H., Machine learning and its impact on control systems: A review, Mater. Today Proc. 47 (2021) 3744–3749. 3rd International Conference on Computational and Experimental Methods in Mechanical Engineering.
[28]
Thangavel S., Maheswari C., Priyanka E., Dynamic modeling and control analysis of industrial electromechanical servo positioning system using machine learning technique, J. Test. Eval. 49 (4) (2021) 2425–2440.
[29]
Kato D., Yoshitsugu K., Hirogaki T., Aoyama E., Takahashi K., Predicting positioning error and finding features for large industrial robots based on deep learning, Int. J. Autom. Technol. 15 (2) (2021) 206–214.
[30]
Bucinskas V., Dzedzickis A., Sumanas M., Sutinys E., Petkevicius S., Butkiene J., Virzonis D., Morkvenaite-Vilkonciene I., Improving industrial robot positioning accuracy to the microscale using machine learning method, Machines 10 (10) (2022) 940.
[31]
Sethuramalingam P., Uma M., Garg R., Pharlia T., Rajsingh R., Performance analysis of accuracy and repeatability of IRB1410 industrial robot using taguchi analysis with machine learning approach, Int. J. Interact. Des. Manufa. (IJIDeM) 17 (4) (2023) 1807–1821.
[32]
Wescoat E., Krugh M., Mears L., Random forest regression for predicting an anomalous condition on a UR10 cobot end-effector from purposeful failure data, Procedia Manuf. 53 (2021) 644–655.
[33]
Yin S., Ji W., Wang L., A machine learning based energy efficient trajectory planning approach for industrial robots, Procedia CIRP 81 (2019) 429–434. 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019.
[34]
Yakun J., Jihong C., Huicheng Z., Junxiang W., Contour error modeling and compensation of CNC machining based on deep learning and reinforcement learning, Int. J. Adv. Manuf. Technol. 2022/01/01 (2022).
[35]
Pedregosa J., et al., Scikit-learn: Machine learning in python, 2010, URL: https://scikit-learn.org/stable/index.html.
[36]
Wang W., Tian W., Liao W., Li B., Hu J., Error compensation of industrial robot based on deep belief network and error similarity, Robot. Comput.-Integr. Manuf. 73 (2022).
[37]
Bai Y., On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method, Int. J. Adv. Manuf. Technol. 31 (11–12) (2007) 1243–1250.
[38]
Ma S., Deng K., Lu Y., Xu X., Robot error compensation based on incremental extreme learning machines and an improved sparrow search algorithm, Int. J. Adv. Manuf. Technol. 125 (11–12) (2023) 5431–5443.
[39]
Ferrarini S., Bilancia P., Raffaeli R., Peruzzini M., Pellicciari M., A method for the assessment and compensation of positioning errors in industrial robots, Robot. Comput.-Integr. Manuf. 85 (2024).
[40]
Li J., Zou L., Luo G., Wang W., Lv C., Enhancement and evaluation in path accuracy of industrial robot for complex surface grinding, Robot. Comput.-Integr. Manuf. 81 (2023).
[41]
Shahin M., Chen F.F., Bouzary H., Krishnaiyer K., Integration of lean practices and industry 4.0 technologies: smart manufacturing for next-generation enterprises, Int. J. Adv. Manuf. Technol. 107 (2020) 2927–2936.
[42]
Belloni M., Bilancia P., Raffaeli R., Peruzzini M., Pellicciari M., Design of a test rig for tuning and optimization of high dynamics servo-mechanisms employed in manufacturing automation, Procedia Manuf. 55 (2021) 48–55. FAIM 2021.
[43]
Ferrarini S., Bilancia P., Raffaeli R., Peruzzini M., Pellicciari M., A method for the assessment and compensation of positioning errors in industrial robots, Robot. Comput.-Integr. Manuf. 85 (2024).
[44]
Jin S., Shang S., Jiang S., Cao M., Wang Y., Sensitivity analysis of RV reducer rotation error based on deep Gaussian processes, Sensors 23 (7) (2023).
[45]
Yamamoto M., Iwasaki M., Hirai H., Okitsu Y., Sasaki K., Yajima T., Modeling and compensation for angular transmission error in harmonic drive gearings, IEEJ Trans. Electr. Electron. Eng. 4 (2) (2009) 158–165.
[46]
Nguyen H.-N., Zhou J., Kang H.-J., A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network, Neurocomputing 151 (P3) (2015) 996–1005.
[47]
Nguyen H.-N., Le P.-N., Kang H.-J., A new calibration method for enhancing robot position accuracy by combining a robot model–based identification approach and an artificial neural network–based error compensation technique, Adv. Mech. Eng. 11 (1) (2019).
[48]
Cao H.Q., Nguyen H.X., Tran T.N.-C., Tran H.N., Jeon J.W., A robot calibration method using a neural network based on a butterfly and flower pollination algorithm, IEEE Trans. Ind. Electron. 69 (4) (2022) 3865–3875.
[49]
Bai M., Zhang M., Zhang H., Li M., Zhao J., Chen Z., Calibration method based on models and least-squares support vector regression enhancing robot position accuracy, IEEE Access 9 (2021) 136060–136070.
[50]
Ma S., Deng K., Lu Y., Xu X., Error compensation method of industrial robots considering non-kinematic and weak rigid base errors, Precis. Eng. 82 (2023) 304–315.
[51]
Chen G., Yang J., Xiang H., Ou D., New positional accuracy calibration method for an autonomous robotic inspection system, J. Braz. Soc. Mech. Sci. Eng. 44 (5) (2022).
[52]
Smola A.J., Schölkopf B., A tutorial on support vector regression, Stat. Comput. 14 (3) (2004) 199–222.
[53]
Lecun Y., Bengio Y., Hinton G., Deep learning, Nature 521 (7553) (2015) 436–444.
[54]
Quinlan J., Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.
[55]
Geurts P., Ernst D., Wehenkel L., Extremely randomized trees, Mach. Learn. 63 (1) (2006) 3–42.
[56]
Breiman L., Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[57]
Natekin A., Knoll A., Gradient boosting machines, a tutorial, Front. Neurorobot. 7 (DEC) (2013).
[58]
Bentéjac C., Csörgő A., Martínez-Muñoz G., A comparative analysis of gradient boosting algorithms, Artif. Intell. Rev. 54 (3) (2021) 1937–1967.
[59]
Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y., LightGBM: A highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst. 2017-December (2017) 3147–3155.
[60]
T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. 13-17-August-2016, 2016, pp. 785–794.
[61]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[62]
Arlot S., Celisse A., A survey of cross-validation procedures for model selection, Stat. Surv. 4 (2010) 40–79.
[63]
He X., Zhao K., Chu X., AutoML: A survey of the state-of-the-art, Knowl.-Based Syst. 212 (2021).
[64]
Petropoulos F., Apiletti D., Assimakopoulos V., Babai M.Z., Barrow D.K., Ben Taieb S., Bergmeir C., Bessa R.J., Bijak J., Boylan J.E., Browell J., Carnevale C., Castle J.L., Cirillo P., Clements M.P., Cordeiro C., Cyrino Oliveira F.L., De Baets S., Dokumentov A., Ellison J., Fiszeder P., Franses P.H., Frazier D.T., Gilliland M., Gönül M.S., Goodwin P., Grossi L., Grushka-Cockayne Y., Guidolin M., Guidolin M., Gunter U., Guo X., Guseo R., Harvey N., Hendry D.F., Hollyman R., Januschowski T., Jeon J., Jose V.R.R., Kang Y., Koehler A.B., Kolassa S., Kourentzes N., Leva S., Li F., Litsiou K., Makridakis S., Martin G.M., Martinez A.B., Meeran S., Modis T., Nikolopoulos K., Önkal D., Paccagnini A., Panagiotelis A., Panapakidis I., Pavía J.M., Pedio M., Pedregal D.J., Pinson P., Ramos P., Rapach D.E., Reade J.J., Rostami-Tabar B., Rubaszek M., Sermpinis G., Shang H.L., Spiliotis E., Syntetos A.A., Talagala P.D., Talagala T.S., Tashman L., Thomakos D., Thorarinsdottir T., Todini E., Trapero Arenas J.R., Wang X., Winkler R.L., Yusupova A., Ziel F., Forecasting: theory and practice, Int. J. Forecast. 38 (3) (2022) 705–871.
[65]
Willmott C.J., Matsuura K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res. 30 (1) (2005) 79–82.
[66]
Mesmer P., Neubauer M., Lechler A., Verl A., Robust design of independent joint control of industrial robots with secondary encoders, Robot. Comput.-Integr. Manuf. 73 (2022).

Index Terms

  1. Online motion accuracy compensation of industrial servomechanisms using machine learning approaches
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Robotics and Computer-Integrated Manufacturing
    Robotics and Computer-Integrated Manufacturing  Volume 91, Issue C
    Feb 2025
    522 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 21 November 2024

    Author Tags

    1. Servomechanism
    2. Transmission error
    3. Machine learning
    4. Predictive modeling
    5. Compensation approach
    6. Test rig

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 22 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media