Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Compact color-texture description for texture classification

Published: 01 January 2015 Publication History

Abstract

We show that combining multiple texture description methods significantly improves the performance compared to using the single best texture method alone.We further propose to use information theoretic compression approach to compress high-dimensional multi-texture features into a compact heterogeneous texture representation.We perform a comprehensive evaluation of color features, popular in object recognition, for the task of texture classification.We show that late fusion of our compact texture descriptor with discriminative color feature outperforms state-of-the-art results on challenging texture recognition datasets. Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature. However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7.8%, 4.3% and 5.0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.

References

[1]
T. Ahonen, A. Hadid, M. Pietikainen, Face recognition with local binary patterns, in: ECCV, 2004.
[2]
T. Ahonen, J. Matas, C. He, M. Pietikainen, Rotation invariant image description with local binary pattern histogram fourier features, in: SCIA, 2009.
[3]
A. Bosch, A. Zisserman, X. Munoz, Scene classification via plsa, in: ECCV, 2006.
[4]
B. Caputo, E. Hayman, P. Mallikarjuna, Class-specific material categorisation, in: ICCV, 2005.
[5]
J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, W. Gao, Wld: a robust local image descriptor, PAMI, 32 (2010) 1705-1720.
[6]
I. Dhillon, S. Mallela, R. Kumar, A divisive information-theoretic feature clustering algorithm for text classification, JMLR, 3 (2003) 1265-1287.
[7]
N. Elfiky, F.S. Khan, J. van de Weijer, J. Gonzalez, Discriminative compact pyramids for object and scene recognition, PR, 45 (2012) 1627-1636.
[8]
T. Gevers, A.W.M. Smeulders, Color based object recognition, PR, 32 (1999) 453-464.
[9]
Y. Guo, G. Zhao, M. Pietikainen, Discriminative features for texture description, PR, 45 (2012) 3834-3843.
[10]
Z. Guo, L. Zhang, D. Zhang, A completed modeling of local binary pattern operator for texture classification, TIP, 19 (2010) 1657-1663.
[11]
X. Hong, G. Zhao, M. Pietikainen, X. Chen, Combining lbp difference and feature correlation for texture description, TIP, 23 (2014) 2557-2568.
[12]
S. ul Hussain, B. Triggs, Visual recognition using local quantized patterns, in: ECCV, 2012.
[13]
X. Jiang, Asymmetric principal component and discriminant analyses for pattern classification, PAMI, 31 (2009) 931-937.
[14]
J. Kannala, E. Rahtu, Bsif: binarized statistical image features, in: ICPR, 2012.
[15]
F.S. Khan, R.M. Anwer, J. van de Weijer, A. Bagdanov, A. Lopez, M. Felsberg, Coloring action recognition in still images, IJCV, 105 (2013) 205-221.
[16]
F.S. Khanm, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, A.M. Lopez, Color attributes for object detection, in: CVPR, 2012.
[17]
F.S. Khan, J. van de Weijer, S. Ali, M. Felsberg, Evaluating the impact of color on texture recognition, in: CAIP, 2013.
[18]
F.S. Khan, J. van de Weijer, M. Vanrell, Modulating shape features by color attention for object recognition, IJCV, 98 (2012) 49-64.
[19]
R. Khan, J. van de Weijer, F.S. Khan, D. Muselet, C. Ducottet, C. Barat, Discriminative color descriptors, in: CVPR, 2013.
[20]
S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation using local affine regions, PAMI, 27 (2005) 1265-1278.
[21]
S.H. Lee, J.Y. Choi, Y.M. Ro, K. Plataniotis, Local color vector binary patterns from multichannel face images for face recognition, TIP, 21 (2012) 2347-2353.
[22]
T. Leung, J. Malik, Representing and recognizing the visual appearance of materials using three-dimensional textons, IJCV, 43 (2001) 29-44.
[23]
M. Li, S. Bao, W. Dong, Y. Wang, Z. Su, Head-shoulder based gender recognition, in: ICIP, 2013.
[24]
S.T. Li, Y. Li, Y.N. Wang, Comparison and fusion of multiresolution features for texture classification, in: ICMLC, 2004.
[25]
W. Li, M. Fritz, Recognizing materials from virtual examples, in: ECCV, 2012.
[26]
C. Liu, L. Sharan, E. Adelson, R. Rosenholtz, Exploring features in a bayesian framework for material recognition, in: CVPR, 2010.
[27]
L. Liu, P. Fieguth, D. Clausi, G. Kuang, Sorted random projections for robust rotation-invariant texture classification, PR, 45 (2012) 2405-2418.
[28]
L. Liu, L. Zhao, Y. Long, G. Kuang, P. Fieguth, Extended local binary patterns for texture classification, IVC, 30 (2012) 86-99.
[29]
T. Maenpaa, M. Pietikainen, Classification with color and texture: jointly or separately?, PR, 37 (2004) 1629-1640.
[30]
T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, PAMI, 24 (2002) 971-987.
[31]
E. Rahtu, J. Heikkila, V. Ojansivu, T. Ahonen, Local phase quantization for blur-insensitive image analysis, IVC, 30 (2012) 501-512.
[32]
K.E.A. van de Sande, T. Gevers, C.G.M. Snoek, Evaluating color descriptors for object and scene recognition, PAMI, 32 (2010) 1582-1596.
[33]
A. Satpathy, X. Jiang, H.L. Eng, Lbp-based edge-texture features for object recognition, TIP, 23 (2014) 1953-1964.
[34]
B. Scholkopf, A. Smola, K.R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10 (1998) 1299-1319.
[35]
L. Sharan, C. Liu, R. Rosenholtz, E. Adelson, Recognizing materials using perceptually inspired features, IJCV, 103 (2013) 348-371.
[36]
G. Sharma, S. ul Hussain, F. Jurie, Local higher-order statistics (lhs) for texture categorization and facial analysis, in: ECCV, 2012.
[37]
L. Sifre, S. Mallat, Rotation, scaling and deformation invariant scattering for texture discrimination, in: CVPR, 2013.
[38]
X. Tan, B. Triggs, Fusing gabor and lbp feature sets for kernel-based face recognition, in: AMFG, 2007.
[39]
X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions, TIP, 19 (2010) 1635-1650.
[40]
R. Timofte, L.V. Gool, A training-free classification framework for textures, writers, and materials, in: BMVC, 2012.
[41]
M. Varma, A. Zisserman, A statistical approach to texture classification from single images, IJCV, 32 (2010) 1705-1720.
[42]
X. Wang, T. Han, S. Yan, An hog-lbp human detector with partial occlusion handling, in: ICCV. 2009.
[43]
J. van de Weijer, C. Schmid, Coloring local feature extraction, in: ECCV, 2006.
[44]
J. van de Weijer, C. Schmid, J.J. Verbeek, D. Larlus, Learning color names for real-world applications, TIP, 18 (2009) 1512-1524.
[45]
J. Ylioinas, A. Hadid, Y. Guo, M. Pietikainen, Efficient image appearance description using dense sampling based local binary patterns, in: ACCV, 2012.
[46]
J. Ylioinas, A. Hadid, M. Pietikainen, Combining contrast information and local binary patterns for gender classification, in: SCIA, 2011.
[47]
J. Ylioinas, X. Hong, M. Pietikainen, Constructing local binary pattern statistics by soft voting, in: SCIA, 2013.
[48]
J. Zhang, K. Huang, Y. Yu, T. Tan, Boosted local structured hog-lbp for object localization, in: CVPR, 2011.
[49]
J. Zhang, M. Marszalek, S. Lazebnik, C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study, IJCV, 73 (2007) 213-218.
[50]
J. Zhang, H. Zhao, J. Liang, Continuous rotation invariant local descriptors for texton dictionary-based texture classification, CVIU, 117 (2013) 56-75.
[51]
L. Zhang, Z. Zhou, H. Li, Binary Gabor pattern: an efficient and robust descriptor for texture classification, in: ICIP, 2012.
[52]
G. Zhao, T. Ahonen, J. Matas, M. Pietikainen, Rotation-invariant image and video description with local binary pattern features, TIP, 21 (2012) 1465-1477.

Cited By

View all
  • (2023)Distilling Local Texture Features for Colorectal Tissue Classification in Low Data RegimesMachine Learning in Medical Imaging10.1007/978-3-031-45676-3_36(357-366)Online publication date: 8-Oct-2023
  • (2021)Compact Deep Color Features for Remote Sensing Scene ClassificationNeural Processing Letters10.1007/s11063-021-10463-453:2(1523-1544)Online publication date: 1-Apr-2021
  • (2020)Feature Selection and Classification of Texture Images Based on Local Structure and Low-Rank ConstraintsPattern Recognition and Computer Vision10.1007/978-3-030-60639-8_51(614-625)Online publication date: 16-Oct-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pattern Recognition Letters
Pattern Recognition Letters  Volume 51, Issue C
January 2015
126 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 January 2015

Author Tags

  1. Color features
  2. Image classification
  3. Texture classification
  4. Texture features

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Distilling Local Texture Features for Colorectal Tissue Classification in Low Data RegimesMachine Learning in Medical Imaging10.1007/978-3-031-45676-3_36(357-366)Online publication date: 8-Oct-2023
  • (2021)Compact Deep Color Features for Remote Sensing Scene ClassificationNeural Processing Letters10.1007/s11063-021-10463-453:2(1523-1544)Online publication date: 1-Apr-2021
  • (2020)Feature Selection and Classification of Texture Images Based on Local Structure and Low-Rank ConstraintsPattern Recognition and Computer Vision10.1007/978-3-030-60639-8_51(614-625)Online publication date: 16-Oct-2020
  • (2019)Stroke diagnosis from retinal fundus images using multi texture analysisJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-16991436:3(2025-2032)Online publication date: 1-Jan-2019
  • (2019)Randomized neural network based signature for color texture classificationMultidimensional Systems and Signal Processing10.1007/s11045-018-0600-630:3(1171-1186)Online publication date: 1-Jul-2019
  • (2019)Multi-stream Convolutional Networks for Indoor Scene RecognitionComputer Analysis of Images and Patterns10.1007/978-3-030-29888-3_16(196-208)Online publication date: 3-Sep-2019
  • (2018)Hierarchical ELM ensembles for visual descriptor fusionInformation Fusion10.1016/j.inffus.2017.07.00341:C(16-24)Online publication date: 1-May-2018
  • (2018)Color texture recognition by color information fusion using the non-extensive entropyMultidimensional Systems and Signal Processing10.1007/s11045-017-0502-z29:4(1269-1284)Online publication date: 1-Oct-2018
  • (2018)Evaluating color and texture features for forgery localization from illuminant mapsMultimedia Tools and Applications10.1007/s11042-017-5574-077:16(21131-21161)Online publication date: 1-Aug-2018
  • (2018)Relocated Colour Contrast Occurrence Matrix and Adapted Similarity Measure for Colour Texture RetrievalAdvanced Concepts for Intelligent Vision Systems10.1007/978-3-030-01449-0_51(609-619)Online publication date: 24-Sep-2018
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media