Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A bio-inspired stimulator to desynchronize epileptic cortical population models

Published: 01 July 2015 Publication History

Abstract

Pathophysiologic neural synchronization is a hallmark of several neurological disorders such as epilepsy. In addition, based on established neurophysiologic findings, astrocytes dynamically regulate the synaptic transmission and have key roles in stabilizing neural synchronization. Therefore, in the present study, based on the dynamic model of astrocyte, a digital bio-inspired stimulator is proposed to avoid the hyper-synchronous seizure-like activities in a cortical population model. The complete digital circuit of the close loop system that is the bio-inspired stimulator and the cortical population model are implemented in hardware on the ZedBoard development kit. Based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the digital bio-inspired stimulator can effectively prevent the occurrence of spontaneous paroxysmal episodes with a demand-controlled characteristic. In this way, the designed digital stimulator successfully maintains the normal ongoing activity.

References

[1]
M. Amiri, F. Bahrami, M. Janahmadi, Functional modeling of astrocytes in epilepsy: a feedback system perspective, Neural Computing and Applications, 20 (2011) 1131-1139.
[2]
M. Amiri, G. Montaseri, F. Bahrami, On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective, Biological Cybernetics, 105 (2011) 153-166.
[3]
M. Amiri, E. Davoodi-Bojd, F. Bahrami, M. Raza, Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients, Mathematics and Computers in Simulation, 81 (2011) 2471-2491.
[4]
M. Amiri, F. Bahrami, M. Janahmadi, Functional contributions of astrocytes in synchronization of a neuronal network model, Journal of Theoretical Biology, 292 (2012) 60-70.
[5]
M. Amiri, F. Bahrami, M. Janahmadi, On the role of astrocytes in epilepsy: a functional modeling approach, Neuroscience Research, 72 (2012) 172-180.
[6]
M. Amiri, F. Bahrami, M. Janahmadi, Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy, Journal of Computational Neuroscience, 33 (2012) 285-299.
[7]
M. Amiri, N. Hosseinmardi, F. Bahrami, M. Janahmadi, Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments, Journal of Computational Neuroscience, 34 (2013) 489-504.
[8]
M. Amiri, G. Montaseri, F. Bahrami, A phase plane analysis of neuron-astrocyte interactions, Neural Networks, 44 (2013) 157-165.
[9]
R.M. Azghadi, S. Al-Sarawi, D. Abbott, N. Iannella, A neuromorphic VLSI design for spike timing and rate based synaptic plasticity, Neural Networks, 45 (2013) 70-82.
[10]
A. Berényi, M. Belluscio, D. Mao, G. Buzsáki, Closed-loop control of epilepsy by transcranial electrical stimulation, Science, 337 (2012) 735-737.
[11]
J.M. Bronstein, M. Tagliati, R.L. Alterman, A.M. Lozano, J. Volkmann, A. Stefani, Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues, Archives of Neurology, 68 (2011) 165.
[12]
L.E. Clarke, B.A. Barres, Emerging roles of astrocytes in neural circuit development, Nature Reviews Neuroscience, 14 (2013) 311-321.
[13]
Destexhe, A. (2008). Cortico-thalamic feedback: a key to explain absence seizures, 1-44.
[14]
T. Fellin, Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity, Journal of Neurochemistry, 108 (2009) 533-544.
[15]
R. Fisher, V. Salanova, Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy, Epilepsia, 51 (2010) 899-908.
[16]
F. Frohlich, I. Timofeev, T.J. Sejnowski, M. Bazhenov, Extracellular potassium dynamics and epileptogenesis, Computational Neuroscience in Epilepsy (2008) 419.
[17]
E.L. Graas, E.A. Brown, R.H. Lee, An FPGA-based approach to high-speed simulation of conductance-based neuron models, Neuroinformatics, 2 (2004) 417-435.
[18]
M.M. Halassa, T. Fellin, P.G. Haydon, Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior, Neuropharmacology, 57 (2009) 343-346.
[19]
C. Hauptmann, O. Popovych, P.A. Tass, Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study, Biological Cybernetics, 93 (2005) 463-470.
[20]
C. Hauptmann, O. Popovych, P.A. Tass, Demand-controlled desynchronization of oscillatory networks by means of a multisite delayed feedback stimulation, Computing and Visualization in Science, 10 (2007) 71-78.
[21]
G. Indiveri, T.K. Horiuchi, Frontiers in neuromorphic engineering, Frontiers in Neuroscience, 5 (2011).
[22]
R. Kanski, M.E. van Strien, P. van Tijn, E.M. Hol, A star is born: new insights into the mechanism of astrogenesis, Cellular and Molecular Life Sciences, 71 (2014) 433-447.
[23]
U. Kim, M.V. Sanchez-Vives, D.A. McCormick, Functional dynamics of GABAergic inhibition in the thalamus, Science, 278 (1997) 130-134.
[24]
M.L. Kringelbach, N. Jenkinson, S.L.F. Owen, T.Z. Aziz, Translational principles of deep brain stimulation, Nature Reviews Neuroscience, 8 (2007) 623-635.
[25]
K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, Synchronization phenomena in human epileptic brain networks, Journal of Neuroscience Methods, 183 (2009) 42-48.
[26]
W.X.Y. Li, R.C.C. Cheung, R.H.M. Chan, D. Song, T.W. Berger, Real-time prediction of neuronal population spiking activity using FPGA, IEEE Transactions on Biomedical Circuits and Systems, 7 (2013) 489-498.
[27]
M.L. Linne, T.O. Jalonen, Astrocyte-neuron interactions: from experimental research-based models to translational medicine, Progress in Molecular Biology and Translational Science, 123 (2014) 191.
[28]
M. Luo, Y. Wu, J. Peng, Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators, Biological Cybernetics, 101 (2009) 241-246.
[29]
G. Montaseri, M.J. Yazdanpanah, M. Amiri, Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators, in: 2011 Third world congress on nature and biologically inspired computing (NaBIC), IEEE, 2011, pp. 195-200.
[30]
G. Montaseri, M.J. Yazdanpanah, A. Pikovsky, M. Rosenblum, Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback, Chaos. An Interdisciplinary Journal of Nonlinear Science, 23 (2013) 33122.
[31]
S. Nazari, K. Faez, E. Karami, M. Amiri, A digital neuromorphic circuit for a simplified model of astrocyte dynamics, Neuroscience Letters, 582 (2014) 21-26.
[32]
E.A. Newman, New roles for astrocytes: regulation of synaptic transmission, Trends in Neurosciences, 26 (2003) 536-542.
[33]
O.E.E. Omel'chenko, C. Hauptmann, Y.L.L. Maistrenko, P.A.A. Tass, Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation, Physica D: Nonlinear Phenomena, 237 (2008) 365-384.
[34]
O.V. Popovych, P.A. Tass, Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback, Physical Review E, 82 (2010) 26204.
[35]
D.E. Postnov, R.N. Koreshkov, N.A. Brazhe, A.R. Brazhe, O.V. Sosnovtseva, Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks, Journal of Biological Physics, 35 (2009) 425-445.
[36]
Rice, K.L., Bhuiyan, M.A., Taha, T.M., Vutsinas, C.N., & Smith, M.C. (2009). FPGA implementation of Izhikevich spiking neural networks for character recognition. In 2009 International conference on reconfigurable computing and FPGAs (pp. 451-456). http://dx.doi.org/10.1109/ReConFig.2009.77.
[37]
C.R. Rose, C. Karus, Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions, Glia, 61 (2013) 1191-1205.
[38]
M. Rosenblum, N. Tukhlina, A. Pikovsky, L. Cimponeriu, Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble, International Journal of Bifurcation and Chaos, 16 (2006) 1989-1999.
[39]
B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S.N. Haber, Z. Israel, Closed-loop deep brain stimulation is superior in ameliorating parkinsonism, Neuron, 72 (2011) 370-384.
[40]
M. Steriade, D. Contreras, Spike-wave complexes and fast components of cortically generated seizures I. Role of neocortex and thalamus, Journal of Neurophysiology, 80 (1998) 1439-1455.
[41]
P. Suffczynski, S. Kalitzin, F.H. Lopes Da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience, 126 (2004) 467-484.
[42]
P. Suffczynski, S. Kalitzin, F.H. Lopes da Silva, A neuronalnetwork model of corticothalamic oscillations: the emergence of epileptiform absence seizures, in: Computational neuroscience in epilepsy, Elsevier, Amsterdam, 2008, pp. 403-418.
[43]
P. Suffczynski, F. Wendling, J.J. Bellanger, F.H. Lopes Da Silva, Some insights into computational models of (patho) physiological brain activity, Proceedings of the IEEE, 94 (2006) 784-804.
[44]
F.T. Sun, M.J. Morrell, R.E. Wharen, Responsive cortical stimulation for the treatment of epilepsy, Neurotherapeutics, 5 (2008) 68-74.
[45]
J. Tejada, K.M. Costa, P. Bertti, N. Garcia-Cairasco, The epilepsies: complex challenges needing complex solutions, Epilepsy & Behavior: E&B, 26 (2013) 212-228.
[46]
N. Tukhlina, M. Rosenblum, Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation, Journal of Biological Physics, 34 (2008) 301-314.
[47]
J.H.B. Wijekoon, P. Dudek, VLSI circuits implementing computational models of neocortical circuits, Journal of Neuroscience Methods, 210 (2012) 93-109.

Cited By

View all
  • (2018)Analog implementation of neuron---astrocyte interaction in tripartite synapseJournal of Computational Electronics10.1007/s10825-015-0727-815:1(311-323)Online publication date: 21-Dec-2018
  • (2018)A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural networkNeural Computing and Applications10.1007/s00521-015-2071-028:2(375-390)Online publication date: 27-Dec-2018
  • (2017)On the role of astrocyte analog circuit in neural frequency adaptationNeural Computing and Applications10.1007/s00521-015-2112-828:5(1109-1121)Online publication date: 1-May-2017
  1. A bio-inspired stimulator to desynchronize epileptic cortical population models

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Neural Networks
      Neural Networks  Volume 67, Issue C
      July 2015
      156 pages

      Publisher

      Elsevier Science Ltd.

      United Kingdom

      Publication History

      Published: 01 July 2015

      Author Tags

      1. DBS
      2. Epilepsy
      3. Hardware implementation
      4. Neural population model
      5. Synchronization

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2018)Analog implementation of neuron---astrocyte interaction in tripartite synapseJournal of Computational Electronics10.1007/s10825-015-0727-815:1(311-323)Online publication date: 21-Dec-2018
      • (2018)A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural networkNeural Computing and Applications10.1007/s00521-015-2071-028:2(375-390)Online publication date: 27-Dec-2018
      • (2017)On the role of astrocyte analog circuit in neural frequency adaptationNeural Computing and Applications10.1007/s00521-015-2112-828:5(1109-1121)Online publication date: 1-May-2017

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media