Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Analog implementation of neuron---astrocyte interaction in tripartite synapse

Published: 01 March 2016 Publication History

Abstract

Neural synchronization is considered as an important mechanism for information processing. In addition, recent neurophysiological findings approve that astrocytes adjust the synaptic transmission of neural networks. Motivated by these observations, we develop an analog neuromorphic circuit to implement the tripartite synapse. To model the dynamics of the intracellular calcium waves produced by the astrocytes, we utilize a simplified model which considers the key physiological pathways of neuron---astrocyte communication. Next, using an astrocyte analog circuit, a tripartite synapse circuit is constructed by connecting two modified differential pair integrator neurons and one astrocyte circuits. It is designed and simulated using HSPICE simulator in $$0.35\,\upmu \hbox {m}$$0.35μm standard CMOS technology. The simulation results of the tripartite synapse circuit, demonstrate that astrocyte circuit plays a crucial role in neuronal firing synchronicity from hardware point of view. In this way, astrocyte---neuron collaboration leads to the emergence of synchronous/asynchronous patterns in neural responses. Therefore, it makes possible to have a new circuit in which astrocyte actively contributes in neural information processing.

References

[1]
Linne, M.L., Jalonen, T.O.: Astrocyte---neuron interactions: from experimental research-based models to translational medicine. Prog. Mol. Biol. Transl. Sci. 123, 191 (2014)
[2]
Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1 (2011)
[3]
Bartolozzi, C., Indiveri, G.: Synaptic dynamics in analog VLSI. Neural Comput. 19(10), 2581---2603 (2007)
[4]
Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607---2614 (2011)
[5]
Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte-neuron inter play in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35---54 (2014)
[6]
Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)
[7]
Kanski, R., van Strien, M.E., van Tijn, P., Hol, E.M.: A star is born: new insights into the mechanism of astrogenesis. Cell. Mol. Life Sci. 71(3), 433---447 (2014)
[8]
Molofsky, A.V., Krenick, R., Ullian, E., Tsai, H.H., Deneen, B., Richardson, W.D., Barres, B.A., Rowitch, D.H.: Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9), 891---907 (2012)
[9]
Min, R., Santello, M., Nevian, T.: The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6 (2012).
[10]
Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14(5), 311---321 (2013)
[11]
Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533---544 (2009)
[12]
Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4), 691---705 (2012)
[13]
Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60---70 (2012)
[14]
Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285---299 (2012)
[15]
Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte---neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on odeling and experiments. J. Comput. Neurosci. 34(3), 489---504 (2013)
[16]
Nazari, S., Faez, K., Karami, E., Amiri, M.: A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci. Lett. 582, 21---26 (2014)
[17]
Joshi, J., Zhang, J., Wang, C., Hsu, C. C., Parker, A.C., Zhou, C., Ravishankar, U.: A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp. 139---142 (2011)
[18]
Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron---astrocyte interactions. J. Comput. Electron. 14, 227---239 (2015)
[19]
Ranjbar, M., Amiri, M.: An analog astrocyte-neuron interaction circuit for neuromorphic applications. J. Comput. Electron. (JCEL) (2015).
[20]
Nazari, S., Faez, K., Amiri, M., Karami, E.: A digital implementation of neuron---astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79---90 (2015)
[21]
Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)
[22]
Davies, S., Galluppi, F., Rast, A.D., Furber, S.B.: A forecast-based STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3---14 (2012)
[23]
Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239---255 (2010)
[24]
Brink, S., Nease, S., Hasler, P.: Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit. Neural Netw. 45, 39---49 (2013)
[25]
Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338(6111), 1202---1205 (2012)
[26]
Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G.: Neuromorphic electronic circuits for building autonomous cognitive systems. In: Proceedings of the IEEE 102.9, pp. 1367---1388 (2014)
[27]
Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4---26 (2013)
[28]
Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuit 48(8), 1943---1953 (2013)
[29]
Piri, M., Amiri, M., Amiri, M.: A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw. 67, 74---83 (2015)
[30]
Amiri, M., Montaseri, G., Bahrami, F.: A phase plane analysis of neuron---astrocyte interactions. Neural Netw. 44, 157---165 (2013)
[31]
Montaseri, G., Yazdanpanah, M. J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Nature and Biologically Inspired Computing (NaBIC), Third World Congress on IEEE, pp. 195---200 (2011)
[32]
Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425---445 (2009)
[33]
Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4---26 (2013)
[34]
Ambroise, M., Levi, T., Joucla, S., Yvert, B., Saïghi, S.: Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front. Neurosci. 7, 215 (2013)
[35]
Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4---5), 335---347 (2008)
[36]
Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637---3642 (2005)
[37]
Giugliano, M.: Calcium waves in astrocyte networks: theory and experiments. Front. Neurosci. 3(2), 160---161 (2009)
[38]
Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208---215 (2006)
[39]
Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10), 536---542 (2003)
[40]
Clarke, Laura E., Attwell, David: An astrocyte TRP switch for inhibition. Nat. Neurosci. 15(1), 3---4 (2012)
[41]
Amiri, M., Bahrami, F., Janahmadi, M.: Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput. Appl. 20(8), 1131---1139 (2011)
[42]
Amiri, M., Bahrami, F., Janahmadi, M.: On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72(2), 172---180 (2012)
[43]
Amiri, M., Montaseri, G., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153---166 (2011)
[44]
Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963---2976 (2002)
[45]
Smith, K.: Neuroscience: settling the great glia debate. Nature 468, 160---162 (2010)
[46]
Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841), 1083---1086 (2007)
[47]
Ranjbar, M., Amiri, M.: A modified DPI-neuron with various biological firing patterns. In: 6th Iranian Conference on Electrical and Electronics Engineering (ICEEE), pp. 2589---2592 (2014)
[48]
Geiger, Randall L., Allen, Phillip E., Strader, Noel R.: VLSI Design Techniques for Analog and Digital Circuits, vol. 90. McGraw-Hill, New York (1990)
[49]
Silchenko, A.N., Tass, P.A.: Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern. 98(1), 61---74 (2008)
[50]
Ackert, J.M., Wu, S.H., Lee, J.C., Abrams, J., Hu, E.H., Perlman, I., Bloom-field, S.A.: Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in themam-malian retina. J. Neurosci. 26, 4206---4215 (2006)
[51]
Benda, J., Longtin, A., Maler, L.: A synchronization-desynchronization code for natural communication signals. Neuron 52, 347---358 (2006)
[52]
Amiri, M., Davoodi, E., Bahrami, F., Raza, M.: Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math. Comput. Simul. 81, 2471---2491 (2011)

Cited By

View all
  • (2020)Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS TechnologyJournal of Computational Electronics10.1007/s10825-020-01514-519:3(1313-1328)Online publication date: 18-May-2020
  • (2018)A neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyteNeurocomputing10.1016/j.neucom.2017.06.071272:C(197-203)Online publication date: 10-Jan-2018
  • (2017)On the role of astrocyte analog circuit in neural frequency adaptationNeural Computing and Applications10.1007/s00521-015-2112-828:5(1109-1121)Online publication date: 1-May-2017
  1. Analog implementation of neuron---astrocyte interaction in tripartite synapse

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational Electronics
      Journal of Computational Electronics  Volume 15, Issue 1
      March 2016
      346 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 March 2016

      Author Tags

      1. Analog circuit
      2. Neuromorphic
      3. Neuron---astrocyte interaction
      4. Tripartite synapse

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS TechnologyJournal of Computational Electronics10.1007/s10825-020-01514-519:3(1313-1328)Online publication date: 18-May-2020
      • (2018)A neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyteNeurocomputing10.1016/j.neucom.2017.06.071272:C(197-203)Online publication date: 10-Jan-2018
      • (2017)On the role of astrocyte analog circuit in neural frequency adaptationNeural Computing and Applications10.1007/s00521-015-2112-828:5(1109-1121)Online publication date: 1-May-2017

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media