Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Win-win kernelization for degree sequence completion problems

Published: 01 September 2016 Publication History

Abstract

We study provably effective and efficient data reduction for a class of NP-hard graph modification problems based on vertex degree properties. We show fixed-parameter tractability for NP-hard graph completion (that is, edge addition) cases while we show that there is no hope to achieve analogous results for the corresponding vertex or edge deletion versions. Our algorithms are based on transforming graph completion problems into efficiently solvable number problems and exploiting f-factor computations for translating the results back into the graph setting. Our core observation is that we encounter a win-win situation: either the number of edge additions is small or the problem is polynomial-time solvable. This approach helps in answering an open question by Mathieson and Szeider JCSS 2012 concerning the polynomial kernelizability of Degree Constraint Edge Addition and leads to a general method of approaching polynomial-time preprocessing for a wider class of degree sequence completion problems. We describe interactions between number and graph problems.f-Factor computations allow to link number and graph problems.We present a win-win kernelization framework for edge insertion problems.Maximum vertex degree governs the complexity of degree sequence completion problems.

References

[1]
C. Bazgan, R. Bredereck, S. Hartung, A. Nichterlein, G.J. Woeginger, Finding large degree-anonymous subgraphs is hard, Theor. Comput. Sci., 622 (2016) 90-110.
[2]
H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.M. Thilikos, (Meta) kernelization, in: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2009, pp. 629-638.
[3]
H.L. Bodlaender, S. Thomassé, A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theor. Comput. Sci., 412 (2011) 4570-4578.
[4]
H.L. Bodlaender, B.M.P. Jansen, S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math., 28 (2014) 277-305.
[5]
A. Borri, T. Calamoneri, R. Petreschi, Recognition of unigraphs through superposition of graphs, J. Graph Algorithms Appl., 15 (2011) 323-343.
[6]
A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: a Survey, SIAM, 1999.
[7]
L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties, Inf. Process. Lett., 58 (1996) 171-176.
[8]
L. Cai, J. Chen, R.G. Downey, M.R. Fellows, Advice classes of parameterized tractability, Ann. Pure Appl. Logic, 84 (1997) 119-138.
[9]
G. Chartrand, L. Lesniak, C.M. Mynhardt, O.R. Oellermann, Degree uniform graphs, Ann. N.Y. Acad. Sci., 555 (1989) 122-132.
[10]
S. Chester, B. Kapron, G. Srivastava, S. Venkatesh, Complexity of social network anonymization, Soc. Netw. Anal. Min., 3 (2013) 151-166.
[11]
K.L. Clarkson, K. Liu, E. Terzi, Towards identity anonymization in social networks, in: Link Mining: Models, Algorithms, and Applications, Springer, 2010, pp. 359-385.
[12]
G. Cornuéjols, General factors of graphs, J. Comb. Theory, Ser. B, 45 (1988) 185-198.
[13]
R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Springer, 2013.
[14]
D. Eppstein, E.S. Spiro, The h-index of a graph and its application to dynamic subgraph statistics, J. Graph Algorithms Appl., 16 (2012) 543-567.
[15]
P. Erd's, T. Gallai, Graphs with prescribed degrees of vertices, Mat. Lapok, 11 (1960) 264-274.
[16]
M.R. Fellows, Blow-ups, win/win's, and crown rules: some new directions in FPT, in: LNCS, vol. 2880, Springer, 2003, pp. 1-12.
[17]
M.R. Fellows, J. Guo, H. Moser, R. Niedermeier, A generalization of Nemhauser and Trotter's local optimization theorem, J. Comput. Syst. Sci., 77 (2011) 1141-1158.
[18]
J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.
[19]
M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
[20]
P.A. Golovach, Editing to a connected graph of given degrees, in: LNCS, vol. 8635, Springer, 2014, pp. 324-335.
[21]
P.A. Golovach, Editing to a graph of given degrees, Theor. Comput. Sci., 591 (2015) 72-84.
[22]
J. Guo, R. Niedermeier, Invitation to data reduction and problem kernelization, ACM SIGACT News, 38 (2007) 31-45.
[23]
P.L. Hammer, B. Simeone, The splittance of a graph, Combinatorica, 1 (1981) 275-284.
[24]
P.L. Hammer, T. Ibaraki, B. Simeone, Degree sequences of threshold graphs, Congr. Numer., 21 (1975) 329-355.
[25]
S. Hartung, C. Hoffmann, A. Nichterlein, Improved upper and lower bound heuristics for degree anonymization in social networks, in: LNCS, vol. 8504, Springer, 2014, pp. 376-387.
[26]
S. Hartung, A. Nichterlein, R. Niedermeier, O. Suchý, A refined complexity analysis of degree anonymization in graphs, Inf. Comput., 243 (2015) 249-262.
[27]
P. Katerinis, N. Tsikopoulos, Minimum degree and f-factors in graphs, N.Z. J. Math., 29 (2000) 33-40.
[28]
D.J. Kleitman, S.Y. Li, A note on unigraphic sequences, Stud. Appl. Math., 4 (1975) 283-287.
[29]
C. Komusiewicz, R. Niedermeier, New races in parameterized algorithmics, in: LNCS, vol. 7464, Springer, 2012, pp. 19-30.
[30]
S. Kratsch, Recent developments in kernelization: a survey, Bull. Eur. Assoc. Theor. Comput. Sci., 113 (2014).
[31]
K. Liu, E. Terzi, Towards identity anonymization on graphs, in: ACM SIGMOD Conference, ACM, 2008, pp. 93-106.
[32]
L. Lovász, M.D. Plummer, Matching Theory, North-Holland, 1986.
[33]
F. Maffray, M. Preissmann, Linear recognition of pseudo-split graphs, Discrete Appl. Math., 52 (1994) 307-312.
[34]
L. Mathieson, S. Szeider, Editing graphs to satisfy degree constraints: a parameterized approach, J. Comput. Syst. Sci., 78 (2012) 179-191.
[35]
H. Moser, D.M. Thilikos, Parameterized complexity of finding regular induced subgraphs, J. Discret. Algorithms, 7 (2009) 181-190.
[36]
A. Natanzon, R. Shamir, R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math., 113 (2001) 109-128.
[37]
R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.

Cited By

View all
  • (2019)A Parameterized Algorithmics Framework for Degree Sequence Completion Problems in Directed GraphsAlgorithmica10.1007/s00453-018-0494-681:4(1584-1614)Online publication date: 1-Apr-2019
  • (2017)Editing to a planar graph of given degreesJournal of Computer and System Sciences10.1016/j.jcss.2016.11.00985:C(168-182)Online publication date: 1-May-2017
  • (2015)Parameterized Algorithmics for Graph Modification ProblemsRevised Papers of the 41st International Workshop on Graph-Theoretic Concepts in Computer Science - Volume 922410.1007/978-3-662-53174-7_1(3-15)Online publication date: 17-Jun-2015
  1. Win-win kernelization for degree sequence completion problems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computer and System Sciences
      Journal of Computer and System Sciences  Volume 82, Issue 6
      September 2016
      204 pages

      Publisher

      Academic Press, Inc.

      United States

      Publication History

      Published: 01 September 2016

      Author Tags

      1. Computational complexity
      2. Data reduction
      3. Lower bounds for problem kernels
      4. NP-hardness
      5. Polynomial problem kernels
      6. f-Factors

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 17 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2019)A Parameterized Algorithmics Framework for Degree Sequence Completion Problems in Directed GraphsAlgorithmica10.1007/s00453-018-0494-681:4(1584-1614)Online publication date: 1-Apr-2019
      • (2017)Editing to a planar graph of given degreesJournal of Computer and System Sciences10.1016/j.jcss.2016.11.00985:C(168-182)Online publication date: 1-May-2017
      • (2015)Parameterized Algorithmics for Graph Modification ProblemsRevised Papers of the 41st International Workshop on Graph-Theoretic Concepts in Computer Science - Volume 922410.1007/978-3-662-53174-7_1(3-15)Online publication date: 17-Jun-2015

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media