Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Kernel bounds for disjoint cycles and disjoint paths

Published: 01 August 2011 Publication History

Abstract

In this paper, we show that the problems Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless NP@?coNP/poly. Thus, these problems do not allow polynomial time preprocessing that results in instances whose size is bounded by a polynomial in the parameter at hand. We build upon recent results by Bodlaender et al. [6] and Fortnow and Santhanam [20], that show that NP-complete problems that are 'or-compositional' do not have polynomial kernels, unless NP@?coNP/poly. To this machinery, we add a notion of transformation, and obtain that Disjoint Cycles, and Disjoint Paths do not have polynomial kernels, unless NP@?coNP/poly. For the proof, we introduce a problem on strings, called Disjoint Factors, and first show that this problem has no polynomial kernel unless NP@?coNP/poly. We also show that the related Disjoint Cycles Packing problem has a kernel of size O(klogk).

References

[1]
Alon, N., Hoory, S. and Linial, N., The Moore bound for irregular graphs. Graphs and Combinatorics. v18. 53-57.
[2]
Amir, E., Efficient approximation for triangulation of minimum treewidth. In: Breese, J.S., Koller, D. (Eds.), Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann. pp. 7-15.
[3]
Amir, E., Approximation algorithms for treewidth. Algorithmica. v56. 448-479.
[4]
Bodlaender, H.L., A cubic kernel for feedback vertex set. In: Thomas, W., Well, P. (Eds.), Lecture Notes in Computer Science, vol. 4393. Springer Verlag. pp. 320-331.
[5]
Bodlaender, H.L., Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (Eds.), Lecture Notes in Computer Science, vol. 5917. Springer Verlag. pp. 17-37.
[6]
Bodlaender, H.L., Downey, R.G., Fellows, M.R. and Hermelin, D., On problems without polynomial kernels. Journal of Computer and System Sciences. v75. 423-434.
[7]
Bodlaender, H.L., Jansen, B.M.P. and Kratsch, S., Cross-composition: a new technique for kernelization lower bounds. In: Schwentick, T., Dürr, C. (Eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 9. Schloss Dagstuhl'Leibnitz-Zentrum fuer Informatik. pp. 165-176.
[8]
Bodlaender, H.L. and Penninkx, E., A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (Eds.), Lecture Notes in Computer Science, vol. 5018. Springer Verlag. pp. 160-171.
[9]
Bodlaender, H.L., Penninkx, E. and Tan, R.B., A linear kernel for the k-disjoint cycle problem on planar graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (Eds.), Lecture Notes in Computer Science, vol. 5369. Springer Verlag. pp. 294-305.
[10]
Bodlaender, H.L. and van Dijk, T.C., A cubic kernel for feedback vertex set and loop cutset. Theory of Computing Systems. v46. 566-597.
[11]
Bouchitté, V., Kratsch, D., Müller, H. and Todinca, I., On treewidth approximations. Discrete Applied Mathematics. v136. 183-196.
[12]
Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S. and Rosamond, F.A., The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender, H.L., Langston, M.A. (Eds.), Lecture Notes in Computer Science, vol. 4169. Springer Verlag. pp. 192-202.
[13]
Chen, Y., Flum, J. and Müller, M., Lower bounds for kernelizations and other preprocessing procedures. Theory of Computing Systems. v48 i4.
[14]
H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, in: L.J. Schulman (Ed.), Proceedings of the 42nd Annual Symposium on Theory of Computing, STOC 2010, 2010, pp. 251-260.
[15]
Dom, M., Lokshtanov, D. and Saurabh, S., Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (Eds.), Lecture Notes in Computer Science, vol. 5555. Springer Verlag. pp. 378-389.
[16]
Downey, R.G. and Fellows, M.R., Fixed-parameter tractability and completeness I: basic results. SIAM Journal on Computing. v24. 873-921.
[17]
Downey, R.G. and Fellows, M.R., Fixed-parameter tractability and completeness II: on completeness for W{1}. Theoretical Computer Science. v141. 109-131.
[18]
Downey, R.G. and Fellows, M.R., Parameterized Complexity. 1999. Springer.
[19]
Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S. and Villanger, Y., Kernel(s) for problems with no kernel: on out-trees with many leaves (extended abstract). In: Albers, S., Marion, J.-Y. (Eds.), Dagstuhl Seminar Proceedings, vol. 09001. Schloss Dagstuhl, Germany. pp. 421-432.
[20]
Fortnow, L. and Santhanam, R., Infeasibility of instance compression and succinct PCPs for NP. Journal of Computer and System Sciences. v77. 91-106.
[21]
Garey, M.R. and Johnson, D.S., Computers and Intractability, A Guide to the Theory of NP-Completeness. 1979. W.H. Freeman and Company, New York.
[22]
Guo, J. and Niedermeier, R., Invitation to data reduction and problem kernelization. ACM SIGACT News. v38. 31-45.
[23]
Karp, R.M., On the complexity of combinatorial problems. Networks. v5. 45-68.
[24]
Kloks, T., Lee, C.M. and Liu, J., New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Kuc¿era, L. (Ed.), Lecture Notes in Computer Science, vol. 2573. Springer Verlag. pp. 282-295.
[25]
Kratsch, S. and Wahlström, M., Two edge modification problems without polynomial kernels. In: Chen, J., Fomin, F.V. (Eds.), Lecture Notes in Computer Science, vol. 5917. Springer Verlag. pp. 264-275.
[26]
Mathieson, L., Prieto, E. and Shaw, P., Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R. (Eds.), Lecture Notes in Computer Science, vol. 3162. Springer Verlag. pp. 127-137.
[27]
Robertson, N. and Seymour, P.D., Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B. v63. 65-110.
[28]
S. Saurabh, 2009. Personal communication.
[29]
Thomassé, S., A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms. v6 i2.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 412, Issue 35
August, 2011
291 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 01 August 2011

Author Tags

  1. Algorithms
  2. Data reduction
  3. Disjoint cycles
  4. Fixed parameter complexity
  5. Kernelization
  6. Lower bounds

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media