Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Natural language processing systems for capturing and standardizing unstructured clinical information

Published: 01 September 2017 Publication History

Abstract

Display Omitted A literature review for clinical natural language processing systems.Over 7000 publications were reviewed in a multi-stage process.A final list of 71 natural language processing systems was identified.Each system was briefly summarized based on reviewed information. We followed a systematic approach based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) systems that generate structured information from unstructured free text. Seven literature databases were searched with a query combining the concepts of natural language processing and structured data capture. Two reviewers screened all records for relevance during two screening phases, and information about clinical NLP systems was collected from the final set of papers. A total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were determined to fit the review criteria. These papers contained information about 71 different clinical NLP systems, which were then analyzed. The NLP systems address a wide variety of important clinical and research tasks. Certain tasks are well addressed by the existing systems, while others remain as open challenges that only a small number of systems attempt, such as extraction of temporal information or normalization of concepts to standard terminologies. This review has identified many NLP systems capable of processing clinical free text and generating structured output, and the information collected and evaluated here will be important for prioritizing development of new approaches for clinical NLP.

References

[1]
Y. Ni, S. Kennebeck, J.W. Dexheimer, C.M. McAneney, H. Tang, T. Lingren, Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department, J. Am. Med. Inform. Assoc., 22 (2015) 166-178.
[2]
G. Wang, K. Jung, R. Winnenburg, N.H. Shah, A method for systematic discovery of adverse drug events from clinical notes, J. Am. Med. Inform. Assoc., 22 (2015) 1196-1204.
[3]
W. Sun, A. Rumshisky, O. Uzuner, Evaluating temporal relations in clinical text: 2012 i2b2 Challenge, J. Am. Med. Inform. Assoc., 20 (2013) 806-813.
[4]
O. Uzuner, A. Bodnari, S. Shen, T. Forbush, J. Pestian, B.R. South, Evaluating the state of the art in coreference resolution for electronic medical records, J. Am. Med. Inform. Assoc., 19 (2012) 786-791.
[5]
S. Pradhan, N. Elhadad, B.R. South, D. Martinez, A. Vogel, H. Suominen, et al., Task 1: ShARe/CLEF eHealth Evaluation Lab, 2013.
[6]
S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, G. Savova, SemEval-2014 Task 7: Analysis of Clinical Text. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014): Association for Computational Linguistics and Dublin City University; 2014, pp. 5462.
[7]
N. Elhadad, S. Pradhan, S. Gorman, S. Manandhar, W. Chapman, G. Savova, SemEval-2015 Task 14: Analysis of Clinical Text. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015): Association for Computational Linguistics; 2015, pp. 303310.
[8]
S. Jones, Development of a Natural Language Processing (NLP) Web Service for Structuring and Standardizing Unstructured Clinical Information. NAACCR 2016 Annual Conference. St. Louis, MO, 2016.
[9]
Structured Data Capture Charter and Members. Standards & Interoperability Framework.
[10]
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, the PG, Preferred reporting items for systematic reviews and meta-analyses: The prisma statement, Ann. Intern. Med., 151 (2009) 264-269.
[11]
J. Thomas, J. Brunton, S. Graziosa, EPPI-Reviewer 4: Software for Research Synthesis, Social Science Research Unit, UCL Institute of Education, EPPI-Centre Software. London, 2010.
[12]
EndNote. <http://endnote.com/>. {Last accessed 2017 Jun 7}.
[13]
JabRef. <http://www.jabref.org/>. {Last accessed 2017 Jun 7}.
[14]
Szostak J, Ansari S, Madan S, Fluck J, Talikka M, Iskandar A, et al. Construction of biological networks from unstructured information based on a semi-automated curation workflow. Database (Oxford). 2015;2015:bav057.
[15]
M. Miwa, R. Saetre, J.D. Kim, J. Tsujii, Event extraction with complex event classification using rich features, J. Bioinform. Comput. Biol., 8 (2010) 131-146.
[16]
R. Hoehndorf, P.N. Schofield, G.V. Gkoutos, Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases, Sci. Rep., 5 (2015) 10888.
[17]
Q. He, B.P. Veldkamp, V. de, Screening for posttraumatic stress disorder using verbal features in self narratives: a text mining approach, Psychiatry Res., 198 (2012) 441-447.
[18]
A.N. Kho, J.A. Pacheco, P.L. Peissig, L. Rasmussen, K.M. Newton, N. Weston, Electronic medical records for genetic research: results of the eMERGE consortium, Sci. Transl. Med., 3 (2011).
[19]
D. Ferrucci, A. Lally, UIMA: an architectural approach to unstructured information processing in the corporate research environment, Nat. Lang. Eng., 10 (2004) 327-348.
[20]
H. Cunningham, V. Tablan, A. Roberts, K. Bontcheva, Getting more out of biomedical documents with GATE's full lifecycle open source text analytics, Plos Comput. Biol. (2013) 9.
[21]
H. Cunningham, D. Maynard, K. Bontcheva, Text Processing with GATE (Version 6): Gateway Press CA, 2011.
[22]
W.W. Chapman, W. Bridewell, P. Hanbury, G.F. Cooper, B.G. Buchanan, A simple algorithm for identifying negated findings and diseases in discharge summaries, J. Biomed. Inform., 34 (2001) 301-310.
[23]
E. Frank, M.A. Hall, I.H. Witten, The WEKA Workbench. Data Mining: Practical Machine Learning Tools and Techniques. Fourth ed: Morgan Kaugmann, 2016.
[24]
C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J. Bethard, D. McClosky, The Stanford CoreNLP Natural Language Processing Toolkit, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore, Maryland, 2014, pp. 5560.
[25]
S. Bird, E. Klein, E. Loper, Natural Language Processing with Python: O'Reilly Media, Inc., 2009.
[26]
Apache OpenNLP. <http://opennlp.apache.org/>. {Last accessed on 2017 May 30}.
[27]
G. Kadra, R. Stewart, H. Shetty, R.G. Jackson, M.A. Greenwood, A. Roberts, Extracting antipsychotic polypharmacy data from electronic health records: developing and evaluating a novel process, BMC Psychiatry, 15 (2015) 166.
[28]
G. Karystianis, T. Sheppard, W.G. Dixon, G. Nenadic, Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database, BMC Med. Inform. Decis. Mak., 16 (2016) 18.
[29]
I. Korkontzelos, D. Piliouras, A.W. Dowsey, S. Ananiadou, Boosting drug named entity recognition using an aggregate classifier, Artif. Intell. Med., 65 (2015) 145-153.
[30]
Q. Li, S.A. Spooner, M. Kaiser, N. Lingren, J. Robbins, T. Lingren, An end-to-end hybrid algorithm for automated medication discrepancy detection, BMC Med. Inform. Decision Making, 15 (2015).
[31]
A.D. Shah, C. Martinez, An algorithm to derive a numerical daily dose from unstructured text dosage instructions, Pharmacoepidemiol. Drug Saf., 15 (2006) 161-166.
[32]
A. Turchin, A. Sawarkar, Y.A. Dementieva, E. Breydo, H. Ramelson, Effect of EHR user interface changes on internal prescription discrepancies, Appl Clin Inform., 5 (2014) 708-720.
[33]
C. Zheng, N. Rashid, R. Koblick, J. An, Medication extraction from electronic clinical notes in an integrated health system: a study on aspirin use in patients with nonvalvular atrial fibrillation, Clin. Ther., 37 (2015) e2.
[34]
S. Gold, N. Elhadad, X. Zhu, J.J. Cimino, G. Hripcsak, Extracting structured medication event information from discharge summaries, AMIA Annu. Symp. Proc., 23741 (2008).
[35]
D. Martinez, G. Pitson, A. MacKinlay, L. Cavedon, Cross-hospital portability of information extraction of cancer staging information, Artif. Intell. Med., 62 (2014) 11-21.
[36]
R.G. Otal, J.L.L. Guerra, C.L.P. Calderon, A.M. Garcia, V.S. Gironzini, J.P. Serrano, Application of artificial intelligence in tumors sizing classification for, Breast Cancer (2013).
[37]
A.E. Wieneke, E.J. Bowles, D. Cronkite, K.J. Wernli, H. Gao, D. Carrell, Validation of natural language processing to extract breast cancer pathology procedures and results, J. Pathol. Inform., 6 (2015) 38.
[38]
J.M. Buckley, S.B. Coopey, J. Sharko, F. Polubriaginof, B. Drohan, A.K. Belli, The feasibility of using natural language processing to extract clinical information from breast pathology reports, J. Pathol .Inform., 3 (2012) 23.
[39]
N. Ashish, L. Dahm, C. Boicey, University of California, Irvine-pathology extraction pipeline: the pathology extraction pipeline for information extraction from pathology reports, Health Inform. J., 20 (2014) 288-305.
[40]
T. Hao, C. Weng, Adaptive semantic tag mining from heterogeneous clinical research texts, Methods Inf. Med., 54 (2015) 164-170.
[41]
Z. He, S. Carini, T. Hao, I. Sim, C. Weng, A method for analyzing commonalities in clinical trial target populations, AMIA Annu Symp Proc., 2014 (2014) 1777-1786.
[42]
D. Cameron, V. Bhagwan, A.P. Sheth, Towards comprehensive longitudinal healthcare data capture, in: J. Gao, W. Dubitzky, C. Wu, M. Liebman, R. Alhaij, L. Ungar, et al. (Eds.), 2012 Ieee International Conference on Bioinformatics and Biomedicine Workshops, 2012.
[43]
C.Y. Wu, C.K. Chang, D. Robson, R. Jackson, S.J. Chen, R.D. Hayes, Evaluation of smoking status identification using electronic health records and open-text information in a large mental health case register, PLoS One, 8 (2013) e74262.
[44]
E.B. Devine, D. Capurro, E. van Eaton, R. Alfonso-Cristancho, A. Devlin, N.D. Yanez, et al., Preparing Electronic Clinical Data for Quality Improvement and Comparative Effectiveness Research: The SCOAP CERTAIN Automation and Validation Project. EGEMS (Wash DC), vol. 1, 2013, pp. 1025.
[45]
S. Zheng, F. Wang, J.J. Lu, ASLForm: an adaptive self learning medical form generating system, AMIA Annu. Symp. Proc., 2013 (2013) 1590-1599.
[46]
T. Groza, S. Kohler, D. Moldenhauer, N. Vasilevsky, G. Baynam, T. Zemojtel, The human phenotype ontology: semantic unification of common and rare disease, Am. J. Hum. Genet., 97 (2015) 111-124.
[47]
R. Bill, S. Pakhomov, E.S. Chen, T.J. Winden, E.W. Carter, G.B. Melton, Automated extraction of family history information from clinical notes, AMIA Annu. Symp. Proc., 2014 (2014) 1709-1717.
[48]
C. Friedman, T. Borlawsky, L. Shagina, H.R. Xing, Y.A. Lussier, Bio-ontology and text: bridging the modeling gap, Bioinformatics, 22 (2006) 2421-2429.
[49]
L. Chen, C. Friedman, Extracting phenotypic information from the literature via natural language processing, Stud. Health Technol. Inform., 107 (2004) 758-762.
[50]
J.G. Klann, P. Szolovits, An intelligent listening framework for capturing encounter notes from a doctor-patient dialog, BMC Med. Inform. Decis. Mak., 9 (2009) S3.
[51]
L. Cui, A. Bozorgi, S.D. Lhatoo, G.Q. Zhang, S.S. Sahoo, EpiDEA: extracting structured epilepsy and seizure information from patient discharge summaries for cohort identification, AMIA Annu. Symp. Proc., 2012 (2012) 1191-1200.
[52]
R.S. Crowley, M. Castine, K. Mitchell, G. Chavan, T. McSherry, M. Feldman, caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research, J. Am. Med. Inform. Assoc.: JAMIA, 17 (2010) 253-264.
[53]
H.J. Lowe, Y. Huang, D.P. Regula, Using a statistical natural language Parser augmented with the UMLS specialist lexicon to assign SNOMED CT codes to anatomic sites and pathologic diagnoses in full text pathology reports, AMIA Annu. Symp. Proc., 2009 (2009) 386-390.
[54]
M. Kreuzthaler, S. Schulz, A. Berghold, Secondary use of electronic health records for building cohort studies through top-down information extraction, J. Biomed. Inform., 53 (2015) 188-195.
[55]
L.C. Childs, R. Enelow, L. Simonsen, N.H. Heintzelman, K.M. Kowalski, R.J. Taylor, Description of a rule-based system for the i2b2 challenge in natural language processing for clinical data, J. Am. Med. Inform. Assoc., 16 (2009) 571-575.
[56]
L.W. D'Avolio, A.A. Bui, The clinical outcomes assessment toolkit: a framework to support automated clinical records-based outcomes assessment and performance measurement research, J. Am. Med. Inform. Assoc., 15 (2008) 333-340.
[57]
R. Berlanga, E. Jimenez-Ruiz, V. Nebot, Exploring and linking biomedical resources through multidimensional semantic spaces, BMC Bioinform., 13 (2012) S6.
[58]
T. Cai, A.A. Giannopoulos, S. Yu, T. Kelil, B. Ripley, K.K. Kumamaru, Natural language processing technologies in radiology research and clinical applications, Radiographics, 36 (2016) 176-191.
[59]
S. Doan, M. Conway, T.M. Phuong, L. Ohno-Machado, Natural language processing in biomedicine: a unified system architecture overview, Methods Mol. Biol., 1168 (2014) 275-294.
[60]
D. Piliouras, I. Korkontzelos, A. Dowsey, S. Ananiadou, Ieee, Dealing with data sparsity in Drug Named Entity Recognition, 2013 Ieee International Conference on Healthcare Informatics (Ichi 2013), 2013, pp. 1421.
[61]
H. Xu, Z. Fu, A. Shah, Y. Chen, N.B. Peterson, Q. Chen, Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases, AMIA Annu. Symp. Proc., 2011 (2011) 1564-1572.
[62]
G.K. Savova, J.E. Olson, S.P. Murphy, V.L. Cafourek, F.J. Couch, M.P. Goetz, Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record, J. Am. Med. Inform. Assoc., 19 (2012) e83-e89.
[63]
S.T. Wu, V.C. Kaggal, D. Dligach, J.J. Masanz, P. Chen, L. Becker, A common type system for clinical natural language processing, J. Biomed. Semantics, 4 (2013) 1.
[64]
S. Hassanpour, C.P. Langlotz, Information extraction from multi-institutional radiology reports, Artif. Intell. Med., 66 (2016) 29-39.
[65]
C. Lin, E.W. Karlson, D. Dligach, M.P. Ramirez, T.A. Miller, H. Mo, Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic medical record, J. Am. Med. Inform. Assoc., 22 (2015) e151-e161.
[66]
J. Pathak, S.P. Murphy, B.N. Willaert, H.M. Kremers, B.P. Yawn, W.A. Rocca, Using RxNorm and NDF-RT to classify medication data extracted from electronic health records: experiences from the Rochester Epidemiology Project, AMIA Annu. Symp. Proc., 2011 (2011) 1089-1098.
[67]
J. Pathak, K.R. Bailey, C.E. Beebe, S. Bethard, D.C. Carrell, P.J. Chen, Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium, J. Am. Med. Inform. Assoc., 20 (2013) e341-e348.
[68]
S. Rea, J. Pathak, G. Savova, T.A. Oniki, L. Westberg, C.E. Beebe, Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project, J. Biomed. Inform., 45 (2012) 763-771.
[69]
S.S. Sahoo, S.D. Lhatoo, D.K. Gupta, L. Cui, M. Zhao, C. Jayapandian, Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure for clinical research and patient care, J. Am. Med. Inform. Assoc., 21 (2014) 82-89.
[70]
G.Q. Zhang, L. Cui, S. Lhatoo, S.U. Schuele, S.S. Sahoo, MEDCIS: multi-modality epilepsy data capture and integration system, AMIA Annu. Symp. Proc., 2014 (2014) 1248-1257.
[71]
L. Zhou, Y. Lu, C.J. Vitale, P.L. Mar, F. Chang, N. Dhopeshwarkar, Representation of information about family relatives as structured data in electronic health records, Appl. Clin. Inform., 5 (2014) 349-367.
[72]
K.P. Liao, A.N. Ananthakrishnan, V. Kumar, Z. Xia, A. Cagan, V.S. Gainer, Methods to develop an electronic medical record phenotype algorithm to compare the risk of coronary artery disease across 3 chronic disease cohorts, PLoS One, 10 (2015) e0136651.
[73]
W. Chen, R. Kowatch, S. Lin, M. Splaingard, Y. Huang, Interactive cohort identification of sleep disorder patients using natural language processing and i2b2, Appl. Clin. Inform., 6 (2015) 345-363.
[74]
S.N. Murphy, G. Weber, M. Mendis, V. Gainer, H.C. Chueh, S. Churchill, Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2), J. Am. Med. Inform. Assoc., 17 (2010) 124-130.
[75]
M.P. Chang, M. Chang, J.Z. Reed, D. Milward, J.J. Xu, W.D. Cornell, Developing timely insights into comparative effectiveness research with a text-mining pipeline, Drug Discovery Today, 21 (2016) 473-480.
[76]
P.A. Dang, M.K. Kalra, T.J. Schultz, S.A. Graham, K.J. Dreyer, Informatics in radiology: render: an online searchable radiology study repository, Radiographics, 29 (2009) 1233-1246.
[77]
D.T. Heinze, M. Morsch, R. Sheffer, M. Jimmink, M. Jennings, W. Morris, LifeCode: a deployed application for automated medical coding, Ai Magazine, 22 (2001) 76.
[78]
C. Lam, F.C. Lai, C.H. Wang, M.H. Lai, N. Hsu, M.H. Chung, Text mining of journal articles for sleep disorder terminologies, PLoS One, 11 (2016) e0156031.
[79]
D.G. Jamieson, P.M. Roberts, D.L. Robertson, B. Sidders, G. Nenadic, Cataloging the biomedical world of pain through semi-automated curation of molecular interactions, Database (Oxford), 2013;2013, bat033.
[80]
N. Sager, M. Lyman, C. Bucknall, N. Nhan, L.J. Tick, Natural language processing and the representation of clinical data, J. Am. Med. Inform. Assoc., 1 (1994) 142-160.
[81]
H. Xu, S.P. Stenner, S. Doan, K.B. Johnson, L.R. Waitman, J.C. Denny, MedEx: a medication information extraction system for clinical narratives, J. Am. Med. Inform. Assoc., 17 (2010) 19-24.
[82]
S.B. Johnson, S. Bakken, D. Dine, S. Hyun, E. Mendonca, F. Morrison, An electronic health record based on structured narrative, J. Am. Med. Inform. Assoc., 15 (2008) 54-64.
[83]
E.S. Chen, G. Hripcsak, C. Friedman, Disseminating natural language processed clinical narratives, AMIA Annu. Symp. Proc., 12630 (2006).
[84]
G. Hripcsak, C. Knirsch, L. Zhou, A. Wilcox, G.B. Melton, Using discordance to improve classification in narrative clinical databases: an application to community-acquired pneumonia, Comput. Biol. Med., 37 (2007) 296-304.
[85]
G. Hripcsak, N.D. Soulakis, L. Li, F.P. Morrison, A.M. Lai, C. Friedman, Syndromic surveillance using ambulatory electronic health records, J. Am. Med. Inform. Assoc., 16 (2009) 354-361.
[86]
S. Hyun, S.B. Johnson, S. Bakken, Exploring the ability of natural language processing to extract data from nursing narratives, Cin-Comput. Inform. Nurs., 27 (2009) 215-223.
[87]
L. Li, H.S. Chase, C.O. Patel, C. Friedman, C. Weng, Comparing ICD9-encoded diagnoses and NLP-processed discharge summaries for clinical trials pre-screening: a case study, AMIA Annu. Symp. Proc., 4048 (2008).
[88]
F.P. Morrison, L. Li, A.M. Lai, G. Hripcsak, Repurposing the clinical record: can an existing natural language processing system de-identify clinical notes?, J. Am. Med. Inform. Assoc., 16 (2009) 37-39.
[89]
P.L. Peissig, L.V. Rasmussen, R.L. Berg, J.G. Linneman, C.A. McCarty, C. Waudby, Importance of multi-modal approaches to effectively identify cataract cases from electronic health records, J. Am. Med. Inform. Assoc., 19 (2012) 225-234.
[90]
H. Salmasian, D.E. Freedberg, C. Friedman, Deriving comorbidities from medical records using natural language processing, J. Am. Med. Inform. Assoc., 20 (2013) e239-e242.
[91]
K. Yadav, E. Sarioglu, M. Smith, H.A. Choi, Automated outcome classification of emergency department computed tomography imaging reports, Acad. Emerg. Med., 20 (2013) 848-854.
[92]
K. Yadav, E. Sarioglu, H.A. Choi, W.B.t. Cartwright, P.S. Hinds, J.M. Chamberlain, Automated outcome classification of computed tomography imaging reports for pediatric traumatic brain injury, Acad. Emerg. Med., 23 (2016) 171-178.
[93]
H. Liu, S.T. Wu, D. Li, S. Jonnalagadda, S. Sohn, K. Wagholikar, Towards a semantic lexicon for clinical natural language processing, AMIA Annu. Symp. Proc., 2012 (2012) 568-576.
[94]
B. Koopman, G. Zuccon, A. Nguyen, A. Bergheim, N. Grayson, Automatic ICD-10 classification of cancers from free-text death certificates, Int. J. Med. Inform., 84 (2015) 956-965.
[95]
S. Sohn, C. Clark, S.R. Halgrim, S.P. Murphy, C.G. Chute, H. Liu, MedXN: an open source medication extraction and normalization tool for clinical text, J. Am. Med. Inform. Assoc., 21 (2014) 858-865.
[96]
J.G. Mork, O. Bodenreider, D. Demner-Fushman, R.I. Dogan, F.M. Lang, Z. Lu, Extracting Rx information from clinical narrative, J. Am. Med. Inform. Assoc., 17 (2010) 536-539.
[97]
L. Jiang, S.M. Edwards, B. Thomsen, C.T. Workman, B. Guldbrandtsen, P. Sorensen, A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and records, BMC Bioinform., 15 (2014) 315.
[98]
S.M. Yin, C.Y Li, Y.G. Zhou, J. Huang, Detecting hotspots in insulin-like growth factors 1 research through metamap and data mining technologies, in: Z. Huang, C. Liu, J. He, G. Huang (Eds.), Web Information Systems Engineering - Wise 2013 Workshops, 2014, pp. 359372.
[99]
L. Zhou, J.M. Plasek, L.M. Mahoney, N. Karipineni, F. Chang, X. Yan, Using medical text extraction, reasoning and mapping system (MTERMS) to process medication information in outpatient clinical notes, AMIA Annu. Symp. Proc., 2011 (2011) 1639-1648.
[100]
F. FitzHenry, H.J. Murff, M.E. Matheny, N. Gentry, E.M. Fielstein, S.H. Brown, Exploring the frontier of electronic health record surveillance: the case of postoperative complications, Med. Care, 51 (2013) 509-516.
[101]
S.H. Huang, P. LePendu, S.V. Iyer, M. Tai-Seale, D. Carrell, N.H. Shah, Toward personalizing treatment for depression: predicting diagnosis and severity, J. Am. Med. Inform. Assoc., 21 (2014) 1069-1075.
[102]
T.S. Cole, J. Frankovich, S. Iyer, P. LePendu, A. Bauer-Mehren, N.H. Shah, Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: a new model for EHR-based research, Pediatr. Rheumatol., 11 (2013).
[103]
S. Yu, T. Cai, A Short Introduction to NILE. arXiv:13116063 2013.
[104]
M. Garcia-Remesal, V. Maojo, H. Billhardt, J. Crespo, Integration of relational and textual biomedical sources. A pilot experiment using a semi-automated method for logical schema acquisition, Methods Inf. Med., 49 (2010) 337-348.
[105]
L. Christensen, H. Harkema, P. Haug, J. Irwin, W. Chapman, ONYX: a system for the semantic analysis of clinical text, in: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing. Boulder, Colorado: Association for Computational Linguistics, 2009, pp. 1927.
[106]
C.H. Lin, N.Y. Wu, D.M. Liou, A multi-technique approach to bridge electronic case report form design and data standard adoption, J. Biomed. Inform., 53 (2015) 49-57.
[107]
D.B. Johnson, R.K. Taira, A.F. Cardenas, D.R. Aberle, Extracting information from free text radiology reports, Int. J. Digit. Libr., 1 (1997) 297-308.
[108]
M.A. Murtaugh, B.S. Gibson, D. Redd, Q. Zeng-Treitler, Regular expression-based learning to extract bodyweight values from clinical notes, J. Biomed. Inform., 54 (2015) 186-190.
[109]
M. Hinchcliff, E. Just, S. Podlusky, J. Varga, R.W. Chang, W.A. Kibbe, Text data extraction for a prospective, research-focused data mart: implementation and validation, BMC Med. Inform. Decis. Mak., 12 (2012) 106.
[110]
L. Christensen, P. Haug, M. Fiszman, MPLUS: a probabilistic medical language understanding system, in: Proceedings of the ACL-02 workshop on Natural language processing in the biomedical domain - Volume 3. Phildadelphia, Pennsylvania: Association for Computational Linguistics, 2002, pp. 2936.
[111]
D.K. Finch, J.A. McCart, S.L. Luther, TagLine: information extraction for semi-structured text in medical progress notes, AMIA Annu. Symp. Proc., 2014 (2014) 534-543.
[112]
S. Skentzos, M. Shubina, J. Plutzky, A. Turchin, Structured vs. unstructured: factors affecting adverse drug reaction documentation in an EMR repository, AMIA Annu. Symp. Proc., 2011 (2011) 1270-1279.
[113]
S. Abhyankar, D. Demner-Fushman, A simple method to extract key maternal data from neonatal clinical notes, AMIA Annu. Symp. Proc., 2013 (2013) 2-9.
[114]
N. Barrett, J.H. Weber-Jahnke, V. Thai, Engineering natural language processing solutions for structured information from clinical text: extracting sentinel events from palliative care consult letters, Stud. Health Technol. Inform., 192 (2013) 594-598.
[115]
S. Fang, M. Palakal, Y. Xia, J. Grannis Shaun, L. Williams Jennifer, Health-Terrain: Visualizing Large Scale Health Data. INDIANA UNIV INDIANAPOLIS, 2014, pp. 79.
[116]
J. Voorham, P. Denig, Computerized extraction of information on the quality of diabetes care from free text in electronic patient records of general practitioners, J. Am. Med. Inform. Assoc., 14 (2007) 349-354.
[117]
Y. Xu, K. Hong, J. Tsujii, E.I. Chang, Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries, J. Am. Med. Inform. Assoc., 19 (2012) 824-832.
[118]
J. Yli-Hietanen, S. Niiranen, M. Aswell, L. Nathanson, Domain-specific analytical language modelingthe chief complaint as a case study, Int. J. Med. Inform., 78 (2009) e27-e30.
[119]
. Uzuner, I. Solti, E. Cadag, Extracting medication information from clinical text, J. Am. Med. Inform. Assoc., 17 (2010) 514-518.

Cited By

View all
  • (2024)Reshaping free-text radiology notes into structured reports with generative question answering transformersArtificial Intelligence in Medicine10.1016/j.artmed.2024.102924154:COnline publication date: 1-Aug-2024
  • (2023)Clinical Oncology Textual Notes Analysis Using Machine Learning and Deep LearningIntelligent Systems10.1007/978-3-031-45389-2_10(140-153)Online publication date: 25-Sep-2023
  • (2022)A neuro-fuzzy based healthcare framework for disease analysis and predictionMultimedia Tools and Applications10.1007/s11042-022-12369-281:8(11737-11753)Online publication date: 18-Feb-2022
  • Show More Cited By
  1. Natural language processing systems for capturing and standardizing unstructured clinical information

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Journal of Biomedical Informatics
          Journal of Biomedical Informatics  Volume 73, Issue C
          September 2017
          170 pages

          Publisher

          Elsevier Science

          San Diego, CA, United States

          Publication History

          Published: 01 September 2017

          Author Tags

          1. Common data elements
          2. Natural language processing
          3. Review
          4. Systematic

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 12 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Reshaping free-text radiology notes into structured reports with generative question answering transformersArtificial Intelligence in Medicine10.1016/j.artmed.2024.102924154:COnline publication date: 1-Aug-2024
          • (2023)Clinical Oncology Textual Notes Analysis Using Machine Learning and Deep LearningIntelligent Systems10.1007/978-3-031-45389-2_10(140-153)Online publication date: 25-Sep-2023
          • (2022)A neuro-fuzzy based healthcare framework for disease analysis and predictionMultimedia Tools and Applications10.1007/s11042-022-12369-281:8(11737-11753)Online publication date: 18-Feb-2022
          • (2022)A systematic mapping study on automated analysis of privacy policiesComputing10.1007/s00607-022-01076-3104:9(2053-2076)Online publication date: 1-Sep-2022
          • (2021)Optimization of Multidimensional Clinical Information System for SchizophreniaComplexity10.1155/2021/17441552021Online publication date: 1-Jan-2021
          • (2021)Temporal Relation Extraction in Clinical TextsACM Computing Surveys10.1145/346247554:7(1-36)Online publication date: 17-Sep-2021
          • (2021)Automatic Classification of Valve Diseases Through Natural Language Processing in Spanish and Active LearningBioengineering and Biomedical Signal and Image Processing10.1007/978-3-030-88163-4_4(39-50)Online publication date: 19-Jul-2021
          • (2018)Temporal Tagging of Noisy Clinical Texts in Brazilian PortugueseComputational Processing of the Portuguese Language10.1007/978-3-319-99722-3_24(231-241)Online publication date: 24-Sep-2018

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media